Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Apr 1;33(3):1783-8.
doi: 10.1016/j.msec.2013.01.005. Epub 2013 Jan 11.

Phosphatidylserine enhances osteogenic differentiation in human mesenchymal stem cells via ERK signal pathways

Affiliations

Phosphatidylserine enhances osteogenic differentiation in human mesenchymal stem cells via ERK signal pathways

Caixia Xu et al. Mater Sci Eng C Mater Biol Appl. .

Abstract

Phosphatidylserine (PS) has been demonstrated to promote bone mineralization. It has also been used in bone repairing biomaterials as a functional molecule. However, the effect of PS on mesenchymal stem cells (MSCs) is not clear. In this study, we determined the effect of PS on the osteogenic differentiation of human MSCs (hMSCs) cultured in growth or osteogenic differentiation medium and the role of the ERK1/2 signaling pathway on PS activity. Cytotoxicity of PS was measured by MTT assay in growth medium for 5 days. Cell osteogenic differentiation was evaluated by alkaline phosphatase (ALP) activity analysis, Alizarin Red S staining and real-time PCR assay. Western blotting and ERK blocking assay were used to examine the role of ERK1/2 signaling pathway on PS activity. The results showed no cytotoxicity for the doses of PS administered. For 21 days, 50-100 μM PS increased ALP expression and mineralization of hMSCs. The expression of the osteogenic gene marker, ALP, osteocalcin (OC), and RUNX2 was enhanced by 50 μM PS treatment at day 14. Phospho-ERK was activated by 50 μM PS at 30 min and 1h in growth medium. In osteogenic medium, 50 μM PS extended phospho-ERK activation by osteogenic induction medium from 30 min to 8 h. U0126, an ERK inhibitor, suppressed the ALP expression induced by PS. Our data indicate that the ERK signal is potentially a mediator in the process of osteogenic differentiation of hMSCs induced by PS. PS, as a functional molecule, has high potential for use in bone repairing biomaterials and bone tissue engineering.

Keywords: Differentiation; Mesenchymal stem cells; Phosphatidylserine; Signal pathway.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources