Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Sep;21(8):776-86.
doi: 10.3109/1061186X.2013.811511. Epub 2013 Jul 5.

Using doxorubicin and siRNA-loaded heptapeptide-conjugated nanoparticles to enhance chemosensitization in epidermal growth factor receptor high-expressed breast cancer cells

Affiliations

Using doxorubicin and siRNA-loaded heptapeptide-conjugated nanoparticles to enhance chemosensitization in epidermal growth factor receptor high-expressed breast cancer cells

Chia Wen Liu et al. J Drug Target. 2013 Sep.

Abstract

The aim of this study was to develop the heptapeptide-conjugated active targeting nanoparticles for delivery of doxorubicin and siRNA to epidermal growth factor receptor (EGFR) high-expressed breast cancer cells. The active targeting nanoparticles were prepared by using a synthesized poly(D,L-lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) copolymer conjugated with a heptapeptide. The particle size of peptide-conjugated nanoparticles was less than 200 nm with narrow size distribution and the surface charge was negative. The uptake of peptide-conjugated nanoparticles was more efficient in EGFR high-expressed MDA-MB-468 cells than in EGFR low-expressed HepG2 cells by 3.9 folds due to peptide specific binding to EGF receptor followed by EGF receptor-mediated endocytosis. The nanoparticles were used to deliver doxorubicin and siRNA, and their in vitro release was faster in pH 4.0 (500 U lipase) than in pH 7.4. The IC50 of doxorubicin-loaded peptide-conjugated nanoparticles was lower than that of peptide-free nanoparticles by 2.3 folds in MDA-MB-468 cells. Similarly, the cellular growth inhibition of siRNA/DOTAP-loaded peptide-conjugated nanoparticles was 2.1 folds higher than that of peptide-free nanoparticles. In conclusion, the heptapeptide-conjugated PLGA-PEG nanoparticles provided active targeting potential to EGFR high-expressed MDA-MB-468 breast cancer cells, and a synergistic cytotoxicity effect was achieved by co-delivery of doxorubicin and siRNA/DOTAP-loaded peptide-conjugated nanoparticles.

PubMed Disclaimer

MeSH terms

LinkOut - more resources