Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013:527:113-28.
doi: 10.1016/B978-0-12-405882-8.00006-4.

Peroxiredoxins and sulfiredoxin at the crossroads of the NO and H2O2 signaling pathways

Affiliations

Peroxiredoxins and sulfiredoxin at the crossroads of the NO and H2O2 signaling pathways

Kahina Abbas et al. Methods Enzymol. 2013.

Abstract

Peroxiredoxins (Prxs) are a family of peroxidases that maintain thiol homeostasis by catalyzing the reduction of organic hydroperoxides, H2O2, and peroxynitrite. Eukaryotic 2-Cys-Prxs, also referred to as typical Prxs, can be inactivated by oxidation of the catalytic cysteine to sulfinic acid, which may regulate the intracellular messenger function of H2O2. A small redox protein, sulfiredoxin (Srx), has been shown to reduce sulfinylated 2-Cys-Prxs and thus to regenerate active 2-Cys-Prxs. We previously reported that cytokine-induced nitric oxide (NO) intervenes in this pathway by decreasing the level of 2-Cys overoxidation and by upregulating Srx through the activation of the transcription factor nuclear factor erythroid 2-related factor (Nrf2). Here, we describe the methods used to monitor the interplay between NO and H2O2 in the regulation of the Prx/Srx system in immunostimulated macrophages, which produce both reactive oxygen species and NO.

Keywords: Hydrogen peroxide; Macrophages; Nitric oxide; Nrf2; Peroxiredoxins; Sulfiredoxin.

PubMed Disclaimer

Publication types

LinkOut - more resources