Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Dec 15:50:28-34.
doi: 10.1016/j.bios.2013.06.024. Epub 2013 Jun 22.

Microfluidic chip-based C. elegans microinjection system for investigating cell-cell communication in vivo

Affiliations

Microfluidic chip-based C. elegans microinjection system for investigating cell-cell communication in vivo

Xingfu Zhao et al. Biosens Bioelectron. .

Abstract

The propagation of intercellular calcium wave (ICW) is essential for coordinating cellular activities in multicellular organisms. However, the limitations of existing analytical methods hamper the studies of this biological process in live animals. In this paper, we demonstrated for the first time a novel microfluidic system with an open chamber for on-chip microinjection of C. elegans and investigation of ICW propagations in vivo. Worms were long-term immobilized on the side wall of the open chamber by suction. Using an external micro-manipulator, localized chemical stimulation was delivered to single intestinal cells of the immobilized worms by microinjection. The calcium dynamics in the intestinal cells expressing Ca(2+) indicator YC2.12 was simultaneously monitored by fluorescence imaging. As a result, thapsigargin injection induced ICW was observed in the intestinal cells of C. elegans. Further analysis of the ICW propagation was realized in the presence of heparin (an inhibitor for IP3 receptor), which allowed us to investigate the mechanism underlying intercellular calcium signaling. We expect this novel microfluidic platform to be a useful tool for studying cell-cell communication in multicellular organisms in vivo.

Keywords: Calcium imaging; Intercellular calcium wave; Microfluidic chip; Microinjection.

PubMed Disclaimer

Publication types

MeSH terms