Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review

N-(pyridin-4-yl)benzo[d]thiazole-6-carboxamide inhibits E. coli UT189 bacterial capsule biogenesis

In: Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010.
[updated ].
Affiliations
Free Books & Documents
Review

N-(pyridin-4-yl)benzo[d]thiazole-6-carboxamide inhibits E. coli UT189 bacterial capsule biogenesis

James W. Noah et al.
Free Books & Documents

Excerpt

Uropathogenic Escherichia coli (UPEC) is the leading cause of community-acquired urinary tract infections (UTIs). Over 100 million UTIs occur annually throughout the world, including more than 7 million cases in U.S. adolescents and adults. UTIs in younger children are associated with greater risk of morbidity and mortality than in older children and adults. During UTI, UPEC exists in both intracellular and extracellular spaces. Infection is initiated by adherence to the apical bladder epithelium and then invading this layer of cells. Within the bladder epithelium, UPEC typically reproduces in a biofilm-like state composed of intracellular bacterial communities (IBC). After maturation of IBCs, UPEC disperses away from the IBC and exits the infected cells. Extracellular UPEC must then re-adhere, initiating the invasion and intracellular propagation phases again. Bacterial-epithelial interactions incite a strong inflammatory response through which the UPEC must persist. One persistence factor is the K type polysaccharide capsule. Capsule protects against phagocytosis, complement action, and antimicrobial peptide (AP) killing. Recent studies have also revealed that capsule along with fibrous protein assemblies is a key part of the IBC formation. Antimicrobial resistance among UPEC is increasing, driving efforts to identify therapeutic targets in the molecular pathogenesis of infection. Capsules are an attractive target because of new insights into the roles of bacterial K capsules in UPEC virulence during UTI. Specific investigations have shown that K capsule contributes to multiple aspects of pathogenesis, including IBC formation. In this program, the team used a cell-based assay to screen 335,740 compounds from the MLSMR library and identified 1,767 hits that inhibited K1 bacterial capsule formation. Of those hits, 59 were confirmed as active in a dose-responsive manner and eight compounds were shown in secondary assays to specifically inhibit capsule formation. Of those eight compounds, three were further characterized for structure-activity relationships, mechanism of action, and selectivity. The probe compound, N-(pyridin-4-yl)benzo[d]thiazole-6-carboxamide, was identified as a small molecule inhibitor of K1 capsule formation with an IC50 value of 1.04 ± 0.13 μM and a >200-fold selectivity index (SI) in BC5637 bladder cells. The probe has been broadly profiled for off-target liabilities and assessed for aqueous solubility, parallel artificial membrane permeability, and hepatocyte microsome and plasma stability. It is suitable for use as a lead compound for inhibition of K1 capsule formation.

PubMed Disclaimer

Similar articles

References

Resulting Publications

    1. Goller CC, Arshad M, Noah JW, Ananthan S, Evans CW, et al. Lifting the Mask: Identification of New Small Molecule Inhibitors of Uropathogenic Escherichia coli Group 2 Capsule Biogenesis. PLoS ONE. 2014;9(7):e96054. doi: 10.1371/journal.pone.0096054. - DOI - PMC - PubMed

References

    1. Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, et al. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2008;46:155–164. - PubMed
    1. Foxman B. The epidemiology of urinary tract infection. Nature reviews Urology. 2010;7:653–660. - PubMed
    1. Smith PA, Romesberg FE. Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation. Nature chemical biology. 2007;3:549–556. - PubMed
    1. Ali AS, Townes CL, Hall J, Pickard RS. Maintaining a sterile urinary tract: the role of antimicrobial peptides. J Urol. 2009;182:21–28. - PubMed
    1. Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ. Intracellular bacterial biofilm-like pods in urinary tract infections. Science. 2003;301:105–107. - PubMed

LinkOut - more resources