Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Nov;117(5):1172-6.
doi: 10.1213/ANE.0b013e318298a692.

Prevention of airway fires: do not overlook the expired oxygen concentration

Affiliations

Prevention of airway fires: do not overlook the expired oxygen concentration

Matthew Remz et al. Anesth Analg. 2013 Nov.

Abstract

Background: It is generally accepted that when an ignition source is used the inspired oxygen concentration (FIO2) should be <30% in the breathing circuit to help prevent airway fires. The time and conditions required to reduce a high O2% in the breathing circuit to <30% has not yet been systematically studied.

Methods: We evaluated the inspired and expired circuit oxygen concentration response times of an Aestiva Avance S/5 anesthesia machine to reach an FIO2 of <30% from a starting FIO2 of 100% and 60% after reducing the FIO2 to 21%. The circuit was connected to a human patient simulator which has a functional residual capacity of 2 L, total lung capacity of 2.8 L, an oxygen consumption of 200 mL/min, and respiratory quotient of 0.8. Fresh gas flow (FGF) inputs of 2 L/min and 5 L/min were chosen to represent a spectrum of typical clinical FGF rates. Minute ventilation was set at 4 L/min. Determining the requisite median time to reach an O2 concentration of <30% in the breathing circuit was the primary aim of the study.

Results: The median times (1st-99th percent confidence interval) required to achieve inspiratory and expiratory oxygen concentrations of <30% with the extended circuit configuration when starting at 60% for 5 L FGFs were 35 (32-36) and 104 (88-122) seconds, respectively. With 2 L FGF, these median times increased to 303 (291-313) and 255 (232-278) seconds, respectively. A shortened circuit configuration (P = 0.006) and higher FGF flow rate (P < 0.0001) were noted to be factors decreasing the median time required to achieve an oxygen concentration of <30%.

Conclusions: Both inspired and expired circuit oxygen concentration may take minutes to decrease to <30% depending on circuit length, FGF rate, and starting circuit oxygen concentration. During the reduction in FIO2, the expiratory oxygen concentration may be >30% for a considerable time after the FIO2 is in a "safe" range. An increased expired oxygen concentration should also be considered an airway fire risk, and patient care protocols may need to be modified based on future studies.

PubMed Disclaimer

Comment in

Publication types