Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1990 Jun 19;29(24):5807-14.
doi: 10.1021/bi00476a023.

Interaction between perdeuterated dimyristoylphosphatidylcholine and low molecular weight pulmonary surfactant protein SP-C

Affiliations
Comparative Study

Interaction between perdeuterated dimyristoylphosphatidylcholine and low molecular weight pulmonary surfactant protein SP-C

G A Simatos et al. Biochemistry. .

Abstract

A low molecular weight hydrophobic protein was isolated from porcine lung lavage fluid using silicic acid and Sephadex LH-20 chromatography. The protein migrated with an apparent molecular weight of 5000-6000 on SDS-PAGE under reducing and nonreducing conditions. Gels run under reducing conditions also showed a minor band migrating with a molecular weight of 12,000. Amino acid compositional analysis and sequencing data suggest that this protein preparation contains intact surfactant protein SP-C and about 30% of truncated SP-C (N-terminal leucine absent). The surfactant protein was combined with perdeuterated dimyristoylphosphatidylcholine (DMPC-d54) in multilamellar vesicles. The protein enhanced the rate of adsorption of the lipid at air-water interfaces. The ability of the protein to alter normal lipid organization was examined by using high-sensitivity differential scanning calorimetry (DSC) and 2H nuclear magnetic resonance spectroscopy (2H NMR). The calorimetric measurements indicated that the protein caused a decrease in the temperature maximum (Tm) and a broadening of the phase transition. At a protein concentration of 8% (w/w), the enthalpy change of transition was reduced to 4.4 kcal/mol compared to 6.3 kcal/mol determined for the pure lipid. NMR spectral moment studies indicated that protein had no effect on lipid chain order in the liquid-crystal phase but reduced orientational order in the gel phase. Two-phase coexistence in the presence of protein was observed over a small temperature range below the pure lipid transition temperature. Spin-lattice relaxation times (T1) were not substantially affected by the protein. Transverse relaxation time (T2e) studies suggest that the protein influences slow lipid motions.

PubMed Disclaimer

Publication types