Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Dec 1;22(23):4720-5.
doi: 10.1093/hmg/ddt325. Epub 2013 Jul 7.

Characterization of human sporadic ALS biomarkers in the familial ALS transgenic mSOD1(G93A) mouse model

Affiliations

Characterization of human sporadic ALS biomarkers in the familial ALS transgenic mSOD1(G93A) mouse model

Eitan Lilo et al. Hum Mol Genet. .

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder of motor neurons. Although most cases of ALS are sporadic (sALS) and of unknown etiology, there are also inherited familial ALS (fALS) cases that share a phenotype similar to sALS pathological and clinical phenotype. In this study, we have identified two new potential genetic ALS biomarkers in human bone marrow mesenchymal stem cells (hMSC) obtained from sALS patients, namely the TDP-43 (TAR DNA-binding protein 43) and SLPI (secretory leukocyte protease inhibitor). Together with the previously discovered ones-CyFIP2 and RbBP9, we investigated whether these four potential ALS biomarkers may be differentially expressed in tissues obtained from mutant SOD1(G93A) transgenic mice, a model that is relevant for at least 20% of the fALS cases. Quantitative real-time PCR analysis of brain, spinal cord and muscle tissues of the mSOD1(G93A) and controls at various time points during the progression of the neurological disease showed differential expression of the four identified biomarkers in correlation with (i) the tissue type, (ii) the stage of the disease and (iii) the gender of the animals, creating thus a novel spatiotemporal molecular signature of ALS. The biomarkers detected in the fALS animal model were homologous to those that were identified in hMSC of our sALS cases. These results support the possibility of a molecular link between sALS and fALS and may indicate common pathogenetic mechanisms involved in both types of ALS. Moreover, these results may pave the path for using the mSOD1(G93A) mouse model and these biomarkers as molecular beacons to evaluate the effects of novel drugs/treatments in ALS.

PubMed Disclaimer

Publication types

MeSH terms

Supplementary concepts

LinkOut - more resources