Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jul 10:13:156.
doi: 10.1186/1471-2180-13-156.

Protein level identification of the Listeria monocytogenes sigma H, sigma L, and sigma C regulons

Affiliations

Protein level identification of the Listeria monocytogenes sigma H, sigma L, and sigma C regulons

Sana Mujahid et al. BMC Microbiol. .

Abstract

Background: Transcriptional regulation by alternative sigma (σ) factors represents an important mechanism that allows bacteria to rapidly regulate transcript and protein levels in response to changing environmental conditions. While the role of the alternative σ factor σB has been comparatively well characterized in L. monocytogenes, our understanding of the roles of the three other L. monocytogenes alternative σ factors is still limited. In this study, we employed a quantitative proteomics approach using Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) to characterize the L. monocytogenes σL, σH, and σC protein regulons. Proteomic comparisons used a quadruple alternative σ factor mutant strain (ΔBCHL) and strains expressing a single alternative σ factor (i.e., σL, σH, and σC; strains ΔBCH, ΔBCL, and ΔBHL) to eliminate potential redundancies between σ factors.

Results: Among the three alternative σ factors studied here, σH provides positive regulation for the largest number of proteins, consistent with previous transcriptomic studies, while σL appears to contribute to negative regulation of a number of proteins. σC was found to regulate a small number of proteins in L. monocytogenes grown to stationary phase at 37°C. Proteins identified as being regulated by multiple alternative σ factors include MptA, which is a component of a PTS system with a potential role in regulation of PrfA activity.

Conclusions: This study provides initial insights into global regulation of protein production by the L. monocytogenes alternative σ factors σL, σH, and σC. While, among these σ factors, σH appears to positively regulate the largest number of proteins, we also identified PTS systems that appear to be co-regulated by multiple alternative σ factors. Future studies should not only explore potential roles of alternative σ factors in activating a "cascade" of PTS systems that potentially regulate PrfA, but also may want to explore the σL and σC regulons under different environmental conditions to identify conditions where these σ factors may regulate larger numbers of proteins or genes.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Functional role category classification of alternative σ factor dependent proteins. Functional role category classification of σH positively-regulated (blue), σH negatively-regulated (red), σC positively-regulated (green), σC negatively-regulated (purple), σL positively-regulated (turquoise), and σL negatively-regulated (gray) proteins; and proteins with higher levels in L. monocytogenes parent strain 10403S (PAR.) compared to ΔBCHL (yellow) and lower levels in PAR. compared to ΔBCHL (orange). Role category numbers correspond to: (1) Amino acid biosynthesis; (2) Biosynthesis of cofactors, prosthetic groups, and carriers; (3) Cell envelope; (4) Cellular processes; (5) Central intermediary metabolism; (6) Energy metabolism; (7) Fatty acid and phospholipid metabolism; (8) Hypothetical proteins; (9) Protein fate; (10) Protein synthesis; (11) Purines, pyrimidines, nucleosides, and nucleotides; (12) Regulatory functions; (13) Transcription; (14) Transport and binding proteins; (15) Unclassified; (16) Unknown function; (17) Viral functions. One protein may be classified into more than one role category. Statistical analysis of contingency tables for regulons with > 10 proteins (i.e., proteins positively regulated by σH; proteins negatively regulated by σL; proteins with higher or lower levels in the parent strain) found that role categories were not randomly distributed among proteins negatively regulated by σL and proteins with lower levels in the parent strain.
Figure 2
Figure 2
Venn diagram of proteins identified as showing higher protein levels in comparisons of (i) L. monocytogenes parent strain 10403S (PAR.) and Δ BCHL ; (ii) ΔBCH and ΔBCHL (identifying genes positively regulated by σL); ΔBCL and ΔBCHL (identifying genes positively regulated by σH); and ΔBHL and ΔBCHL (identifying genes positively regulated by σC). Twelve of the 29 proteins that were found to be positively regulated in the parent strain were also found to be positively regulated by σB in a recent proteomics study, which compared L. monocytogenes parent strain 10403S and a ΔsigB mutant [23]; these proteins include Lmo2748, Lmo2213, Lmo2158, Lmo2047, Lmo1830, Lmo0913, Lmo0796, Lmo0794, Lmo0722, Lmo0654, Lmo0539, and Lmo0265. The 17 proteins that show higher levels in the parent strain as compared to the ΔBCHL strain, but were not identified as positively regulated by any of the alternative σ factors include Lmo1540, Lmo2610, Lmo1422, Lmo1421, Lmo1602, Lmo1426, Lmo1428, Lmo2205, Lmo2398, Lmo1601, Lmo0554, Lmo1634, Lmo0110, Lmo2558, Lmo0783, Lmo0134, and Lmo0098.

Similar articles

Cited by

References

    1. Chaturongakul S, Raengpradub S, Wiedmann M, Boor KJ. Modulation of stress and virulence in Listeria monocytogenes. Trends Microbiol. 2008;16(8):388–396. - PMC - PubMed
    1. Gray MJ, Zadoks RN, Fortes ED, Dogan B, Cai S, Chen Y, Scott VN, Gombas DE, Boor KJ, Wiedmann M. Listeria monocytogenes isolates from foods and humans form distinct but overlapping populations. Appl Environ Microbiol. 2004;70(10):5833–5841. - PMC - PubMed
    1. Zhang C, Nietfeldt J, Zhang M, Benson AK. Functional consequences of genome evolution in Listeria monocytogenes: the lmo0423 and lmo0422 genes encode SigmaC and LstR, a lineage II-specific heat shock system. J Bacteriol. 2005;187(21):7243–7253. - PMC - PubMed
    1. Orsi RH, den Bakker HC, Wiedmann M. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Int J Med Microbiol. 2011;301(2):79–96. - PubMed
    1. O’Byrne CP, Karatzas KA. The role of Sigma B (Sigma B) in the stress adaptations of Listeria monocytogenes: overlaps between stress adaptation and virulence. Adv Appl Microbiol. 2008;65:115–140. - PubMed

Publication types

LinkOut - more resources