Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Aug;161A(8):1866-74.
doi: 10.1002/ajmg.a.36006. Epub 2013 Jul 10.

Non-trisomic homeobox gene expression during craniofacial development in the Ts65Dn mouse model of Down syndrome

Affiliations

Non-trisomic homeobox gene expression during craniofacial development in the Ts65Dn mouse model of Down syndrome

Cherie N Billingsley et al. Am J Med Genet A. 2013 Aug.

Abstract

Trisomy 21 in humans causes cognitive impairment, craniofacial dysmorphology, and heart defects collectively referred to as Down syndrome. Yet, the pathophysiology of these phenotypes is not well understood. Craniofacial alterations may lead to complications in breathing, eating, and communication. Ts65Dn mice exhibit craniofacial alterations that model Down syndrome including a small mandible. We show that Ts65Dn embryos at 13.5 days gestation (E13.5) have a smaller mandibular precursor but a normal sized tongue as compared to euploid embryos, suggesting a relative instead of actual macroglossia originates during development. Neurological tissues were also altered in E13.5 trisomic embryos. Our array analysis found 155 differentially expressed non-trisomic genes in the trisomic E13.5 mandible, including 20 genes containing a homeobox DNA binding domain. Additionally, Sox9, important in skeletal formation and cell proliferation, was upregulated in Ts65Dn mandible precursors. Our results suggest trisomy causes altered expression of non-trisomic genes in development leading to structural changes associated with DS. Identification of genetic pathways disrupted by trisomy is an important step in proposing rational therapies at relevant time points to ameliorate craniofacial abnormalities in DS and other congenital disorders.

Keywords: developmental delay disorders; experimental animal models; genotype-phenotype correlation; trisomy 21.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Sox9 expression in the E13.5 Meckel's and hyoid cartilages
Sox9 expression was increased in theTs65Dn Meckel's cartilage (A) and hyoid cartilage (B) when compared to euploid littermate embryos. Average of nine sections from five euploid and eight sections from five trisomic embryos for Meckel's cartilage; and average of eight sections from four euploid and eight sections from five trisomic embryos for hyoid cartilage. Error bars indicate standard error (*p ≤ 0.05).

References

    1. Ait Yahya-Graison E, Aubert J, Dauphinot L, Rivals I, Prieur M, Golfier G, Rossier J, Personnaz L, Creau N, Blehaut H, Robin S, Delabar JM, Potier MC. Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. Am J Hum Genet. 2007;81:475–491. - PMC - PubMed
    1. Akiyama H, Lyons JP, Mori-Akiyama Y, Yang X, Zhang R, Zhang Z, Deng JM, Taketo MM, Nakamura T, Behringer RR, McCrea PD, de Crombrugghe B. Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev. 2004;18:1072–1087. - PMC - PubMed
    1. Allanson JE, O'Hara P, Farkas LG, Nair RC. Anthropometric craniofacial pattern profiles in Down syndrome. Am J Med Genet. 1993;47:748–752. - PubMed
    1. Arron JR, Winslow MM, Polleri A, Chang CP, Wu H, Gao X, Neilson JR, Chen L, Heit JJ, Kim SK, Yamasaki N, Miyakawa T, Francke U, Graef IA, Crabtree GR. NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature. 2006;441:595–600. - PubMed
    1. Barrow JR, Capecchi MR. Targeted disruption of the Hoxb-2 locus in mice interferes with expression of Hoxb-1 and Hoxb-4. Development. 1996;122:3817–3828. - PubMed

Publication types

MeSH terms