Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jul 2;8(7):e67641.
doi: 10.1371/journal.pone.0067641. Print 2013.

Livestock-associated methicillin and multidrug resistant Staphylococcus aureus is present among industrial, not antibiotic-free livestock operation workers in North Carolina

Affiliations

Livestock-associated methicillin and multidrug resistant Staphylococcus aureus is present among industrial, not antibiotic-free livestock operation workers in North Carolina

Jessica L Rinsky et al. PLoS One. .

Abstract

Objectives: Administration of antibiotics to food animals may select for drug-resistant pathogens of clinical significance, such as methicillin-resistant Staphylococcus aureus (MRSA). In the United States, studies have examined prevalence of MRSA carriage among individuals exposed to livestock, but prevalence of multidrug-resistant S. aureus (MDRSA) carriage and the association with livestock raised with versus without antibiotic selective pressure remains unclear. We aimed to examine prevalence, antibiotic susceptibility, and molecular characteristics of S. aureus among industrial livestock operation (ILO) and antibiotic-free livestock operation (AFLO) workers and household members in North Carolina.

Methods: Participants in this cross-sectional study were interviewed and provided a nasal swab for S. aureus analysis. Resulting S. aureus isolates were assessed for antibiotic susceptibility, multi-locus sequence type, and absence of the scn gene (a marker of livestock association).

Results: Among 99 ILO and 105 AFLO participants, S. aureus nasal carriage prevalence was 41% and 40%, respectively. Among ILO and AFLO S. aureus carriers, MRSA was detected in 7% (3/41) and 7% (3/42), respectively. Thirty seven percent of 41 ILO versus 19% of 42 AFLO S. aureus-positive participants carried MDRSA. S. aureus clonal complex (CC) 398 was observed only among workers and predominated among ILO (13/34) compared with AFLO (1/35) S. aureus-positive workers. Only ILO workers carried scn-negative MRSA CC398 (2/34) and scn-negative MDRSA CC398 (6/34), and all of these isolates were tetracycline resistant.

Conclusions: Despite similar S. aureus and MRSA prevalence among ILO and AFLO-exposed individuals, livestock-associated MRSA and MDRSA (tetracycline-resistant, CC398, scn-negative) were only present among ILO-exposed individuals. These findings support growing concern about antibiotics use and confinement in livestock production, raising questions about the potential for occupational exposure to an opportunistic and drug-resistant pathogen, which in other settings including hospitals and the community is of broad public health importance.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: SW provided pro bono testimony in legal proceedings related to landfills and provided pro bono consultation on radiation and health for two law firms that made gifts to the University of North Carolina and another law firm that did not make a gift to the University of North Carolina. He conducted research on epidemiologic investigation of symptoms reported by neighbors of areas where sewage sludge is applied to land funded by the Water Environment Research Foundation. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1
Figure 1. Antibiotic resistance profiles, clonal complexes, and multi-locus sequence types of all S. aureus isolates from (A) ILO and (B) AFLO participants, stratified by scn status, North Carolina, 2011.

Similar articles

Cited by

References

    1. Gorwitz RJ, Kruszon-Moran D, McAllister SK, McQuillan G, McDougal LK, et al. (2008) Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001–2004. J Infect Dis 197: 1226–1234. - PubMed
    1. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339: 520–532. - PubMed
    1. Klein E, Smith DL, Laxminarayan R (2007) Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999–2005. Emerg Infect Dis 13: 1840–1846. - PMC - PubMed
    1. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, et al. (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298: 1763–1771. - PubMed
    1. Chambers HF, Deleo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7: 629–641. - PMC - PubMed

Publication types

MeSH terms

Substances