Disruption of multivesicular body vesicles does not affect major histocompatibility complex (MHC) class II-peptide complex formation and antigen presentation by dendritic cells
- PMID: 23846690
- PMCID: PMC3750131
- DOI: 10.1074/jbc.M113.461996
Disruption of multivesicular body vesicles does not affect major histocompatibility complex (MHC) class II-peptide complex formation and antigen presentation by dendritic cells
Abstract
The antigen processing compartments in antigen-presenting cells (APCs) have well known characteristics of multivesicular bodies (MVBs). However, the importance of MVB integrity to APC function remains unknown. In this study, we have altered the ultrastructure of the MVB by perturbing cholesterol content genetically through the use of a deletion of the lipid transporter Niemann-Pick type C1 (NPC1). Immunofluorescence and electron microscopic analyses reveal that the antigen processing compartments in NPC1(-/-) dendritic cells (DCs) have an abnormal ultrastructure in that the organelles are enlarged and the intraluminal vesicles are almost completely absent and those remaining are completely disorganized. MHC-II is restricted to the limiting membrane of these enlarged MVBs where it colocalizes with the peptide editor H2-DM. Curiously, proteolytic removal of the chaperone protein Invariant chain from MHC-II, degradation of internalized foreign antigens, and antigenic-peptide binding to nascent MHC-II are normal in NPC1(-/-) DCs. Antigen-pulsed NPC1(-/-) DCs are able to effectively activate antigen-specific CD4 T cells in vitro, and immunization of NPC1(-/-) mice reveals surprisingly normal CD4 T cell activation in vivo. Our data thus reveal that the localization of MHC-II on the intraluminal vesicles of multivesicular antigen processing compartments is not required for efficient antigen presentation by DCs.
Keywords: Antigen Presentation; Antigen Processing; Endosomes; Major Histocompatibility Complex (MHC); Niemann-Pick Disease Type C; T Cell.
Figures





Similar articles
-
Tumor-specific CD4+ T cells are activated by "cross-dressed" dendritic cells presenting peptide-MHC class II complexes acquired from cell-based cancer vaccines.J Immunol. 2006 Feb 1;176(3):1447-55. doi: 10.4049/jimmunol.176.3.1447. J Immunol. 2006. PMID: 16424172
-
Major histocompatibility complex (MHC) class II-peptide complexes arrive at the plasma membrane in cholesterol-rich microclusters.J Biol Chem. 2013 May 10;288(19):13236-42. doi: 10.1074/jbc.M112.442640. Epub 2013 Mar 26. J Biol Chem. 2013. PMID: 23532855 Free PMC article.
-
Activation of Dendritic Cells Alters the Mechanism of MHC Class II Antigen Presentation to CD4 T Cells.J Immunol. 2020 Mar 15;204(6):1621-1629. doi: 10.4049/jimmunol.1901234. Epub 2020 Jan 29. J Immunol. 2020. PMID: 31996461 Free PMC article.
-
MHC class II antigen presentation by dendritic cells regulated through endosomal sorting.Cold Spring Harb Perspect Biol. 2013 Dec 1;5(12):a016873. doi: 10.1101/cshperspect.a016873. Cold Spring Harb Perspect Biol. 2013. PMID: 24296169 Free PMC article. Review.
-
Endosomal sorting of MHC class II determines antigen presentation by dendritic cells.Curr Opin Cell Biol. 2008 Aug;20(4):437-44. doi: 10.1016/j.ceb.2008.05.011. Epub 2008 Jul 5. Curr Opin Cell Biol. 2008. PMID: 18582577 Review.
Cited by
-
Mycobacterium tuberculosis EsxH inhibits ESCRT-dependent CD4+ T-cell activation.Nat Microbiol. 2016 Dec 5;2:16232. doi: 10.1038/nmicrobiol.2016.232. Nat Microbiol. 2016. PMID: 27918526 Free PMC article.
-
Molecular Determinants Regulating the Plasticity of the MHC Class II Immunopeptidome.Front Immunol. 2022 May 16;13:878271. doi: 10.3389/fimmu.2022.878271. eCollection 2022. Front Immunol. 2022. PMID: 35651601 Free PMC article. Review.
-
The Antigen Processing and Presentation Machinery in Lymphatic Endothelial Cells.Front Immunol. 2019 May 7;10:1033. doi: 10.3389/fimmu.2019.01033. eCollection 2019. Front Immunol. 2019. PMID: 31134089 Free PMC article. Review.
-
Exposing the Specific Roles of the Invariant Chain Isoforms in Shaping the MHC Class II Peptidome.Front Immunol. 2013 Dec 13;4:443. doi: 10.3389/fimmu.2013.00443. Front Immunol. 2013. PMID: 24379812 Free PMC article. Review.
-
Efficient Cholesterol Transport in Dendritic Cells Defines Optimal Exogenous Antigen Presentation and Toxoplasma gondii Proliferation.Front Cell Dev Biol. 2022 Mar 4;10:837574. doi: 10.3389/fcell.2022.837574. eCollection 2022. Front Cell Dev Biol. 2022. PMID: 35309938 Free PMC article.
References
-
- Kleijmeer M., Ramm G., Schuurhuis D., Griffith J., Rescigno M., Ricciardi-Castagnoli P., Rudensky A. Y., Ossendorp F., Melief C. J., Stoorvogel W., Geuze H. J. (2001) Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. J. Cell Biol. 155, 53–63 - PMC - PubMed
-
- Zwart W., Griekspoor A., Kuijl C., Marsman M., van Rheenen J., Janssen H., Calafat J., van Ham M., Janssen L., van Lith M., Jalink K., Neefjes J. (2005) Spatial separation of HLA-DM/HLA-DR interactions within MIIC and phagosome-induced immune escape. Immunity 22, 221–233 - PubMed
-
- Carstea E. D., Morris J. A., Coleman K. G., Loftus S. K., Zhang D., Cummings C., Gu J., Rosenfeld M. A., Pavan W. J., Krizman D. B., Nagle J., Polymeropoulos M. H., Sturley S. L., Ioannou Y. A., Higgins M. E., Comly M., Cooney A., Brown A., Kaneski C. R., Blanchette-Mackie E. J., Dwyer N. K., Neufeld E. B., Chang T. Y., Liscum L., Strauss J. F., 3rd, Ohno K., Zeigler M., Carmi R., Sokol J., Markie D., O'Neill R. R., van Diggelen O. P., Elleder M., Patterson M. C., Brady R. O., Vanier M. T., Pentchev P. G., Tagle D. A. (1997) Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277, 228–231 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous