ECG beat classification using a cost sensitive classifier
- PMID: 23849928
- DOI: 10.1016/j.cmpb.2013.05.011
ECG beat classification using a cost sensitive classifier
Abstract
In this paper, we introduce a new system for ECG beat classification using Support Vector Machines (SVMs) classifier with rejection. After ECG preprocessing, the QRS complexes are detected and segmented. A set of features including frequency information, RR intervals, QRS morphology and AC power of QRS detail coefficients is exploited to characterize each beat. An SVM follows to classify the feature vectors. Our decision rule uses dynamic reject thresholds following the cost of misclassifying a sample and the cost of rejecting a sample. Significant performance enhancement is observed when the proposed approach is tested with the MIT-BIH arrhythmia database. The achieved results are represented by the average accuracy of 97.2% with no rejection and 98.8% for the minimal classification cost.
Keywords: Classification cost; ECG beat classification; Support Vector Machines (SVMs).
Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Similar articles
-
Patient-specific ECG beat classification technique.Healthc Technol Lett. 2014 Sep 26;1(3):98-103. doi: 10.1049/htl.2014.0072. eCollection 2014 Sep. Healthc Technol Lett. 2014. PMID: 26609386 Free PMC article.
-
Heartbeat classification using disease-specific feature selection.Comput Biol Med. 2014 Mar;46:79-89. doi: 10.1016/j.compbiomed.2013.11.019. Epub 2013 Dec 3. Comput Biol Med. 2014. PMID: 24529208
-
Heartbeat classification using morphological and dynamic features of ECG signals.IEEE Trans Biomed Eng. 2012 Oct;59(10):2930-41. doi: 10.1109/TBME.2012.2213253. Epub 2012 Aug 15. IEEE Trans Biomed Eng. 2012. PMID: 22907960
-
Cardiac arrhythmia beat classification using DOST and PSO tuned SVM.Comput Methods Programs Biomed. 2016 Nov;136:163-77. doi: 10.1016/j.cmpb.2016.08.016. Epub 2016 Aug 29. Comput Methods Programs Biomed. 2016. PMID: 27686713
-
Classification of electrocardiogram signals with support vector machines and particle swarm optimization.IEEE Trans Inf Technol Biomed. 2008 Sep;12(5):667-77. doi: 10.1109/TITB.2008.923147. IEEE Trans Inf Technol Biomed. 2008. PMID: 18779082
Cited by
-
Prediction of postoperative complications of pediatric cataract patients using data mining.J Transl Med. 2019 Jan 3;17(1):2. doi: 10.1186/s12967-018-1758-2. J Transl Med. 2019. PMID: 30602368 Free PMC article.
-
Optimal Multi-Stage Arrhythmia Classification Approach.Sci Rep. 2020 Feb 19;10(1):2898. doi: 10.1038/s41598-020-59821-7. Sci Rep. 2020. PMID: 32076033 Free PMC article.
-
Medical Decision Support System for Diagnosis of Heart Arrhythmia using DWT and Random Forests Classifier.J Med Syst. 2016 Apr;40(4):108. doi: 10.1007/s10916-016-0467-8. Epub 2016 Feb 27. J Med Syst. 2016. PMID: 26922592
-
Handling class imbalance problem in miRNA dataset associated with cancer.Bioinformation. 2015 Jan 30;11(1):6-10. doi: 10.6026/97320630011006. eCollection 2015. Bioinformation. 2015. PMID: 25780273 Free PMC article.
-
Artificial Intelligence versus Doctors' Intelligence: A Glance on Machine Learning Benefaction in Electrocardiography.Discoveries (Craiova). 2017 Sep 30;5(3):e76. doi: 10.15190/d.2017.6. Discoveries (Craiova). 2017. PMID: 32309594 Free PMC article. Review.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources