Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Oct 15;86(8):1042-53.
doi: 10.1016/j.bcp.2013.07.001. Epub 2013 Jul 10.

Structural insights into Cys-loop receptor function and ligand recognition

Affiliations
Review

Structural insights into Cys-loop receptor function and ligand recognition

Mieke Nys et al. Biochem Pharmacol. .

Abstract

This review outlines recent insights into ligand recognition, channel gating and ion permeation for the family of pentameric ligand-gated ion channels (pLGICs). These receptors are involved in the fast inhibitory and excitatory neurotransmission. Prototypical anion-selective members are the γ-amino butyric acid type A (GABA(A)), γ-amino butyric acid type C (GABA(C)) and glycine receptor. The cation-selective members are the 5-HT3 serotonin and nicotinic acetylcholine (nACh) receptors. They are the target for a wide variety of drugs and dysfunction in these receptors is associated with several diseases. We summarize recent structural knowledge in combination with electrophysiological data and molecular dynamic simulations, thereby describing key features of ligand binding, channel gating and ion permeation. A conserved cation-π interaction between ligand and aromatic residues of the ligand binding site critically contributes to ligand recognition, as revealed by X-ray crystal structures of acetylcholine binding proteins, as well as the integral pLGICs, ELIC and GluCl. In addition, we summarize the possible downstream effects on gating of structural rearrangements in the extracellular ligand-binding domain, which mainly occur in loop C and loop F. These data are discussed in the context of different conformational states of the pore-forming domain observed in crystal structures of GLIC and GluCl, which likely represent the open pore conformation, and ELIC, which likely corresponds to a closed pore conformation. We conclude with a current structural view on the determinants of ion selection and permeation.

Keywords: Channel gating; Cys-loop receptor; Ion permeation; Ligand recognition; Pentameric ligand-gated ion channel.

PubMed Disclaimer

MeSH terms

Substances