Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013:789:273-280.
doi: 10.1007/978-1-4614-7411-1_37.

Radiation affects the responsiveness of bone marrow to G-CSF

Affiliations

Radiation affects the responsiveness of bone marrow to G-CSF

Zhenhuan Zhang et al. Adv Exp Med Biol. 2013.

Abstract

In this study, we investigated the response of irradiated bone marrow cells to granulocyte colony-stimulating factor (G-CSF). Freshly harvested bone marrow cells were treated with either saline (vehicle control) or 20 ng/ml of G-CSF. Thereafter, cells were separated into nonirradiated (no-IR) and irradiated (IR, 0.5 Gy) groups. IR cells exhibited a higher proliferation rate in response to G-CSF, as compared to the no-IR cells. Reduced levels of reactive oxygen species indicated that G-CSF-treated IR cells produced fewer free radicals, as compared to the no-IR cells. The G-CSF-treated IR cells also had a lower apoptotic rate than their no-IR counterparts. Furthermore, G-CSF-treated IR cells exhibited less alteration of mitochondrial membrane potential, as compared to the no-IR cells. Finally, the mitochondrial number increased in the G-CSF-treated IR cells. The radiation-induced increase in plasma IL-6 in vivo could be enhanced by the administration of G-CSF. The data suggest that radiation potentiates the response of bone marrow cells to G-CSF treatment.

PubMed Disclaimer

MeSH terms

LinkOut - more resources