Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Aug;29(4):501-8.
doi: 10.1007/s12264-013-1354-7. Epub 2013 Jul 13.

Protective effects of Batroxobin on spinal cord injury in rats

Affiliations

Protective effects of Batroxobin on spinal cord injury in rats

Hong Fan et al. Neurosci Bull. 2013 Aug.

Abstract

Expansion of the secondary injury following primary spinal cord injury is a major pathological event that increases destruction in the spinal cord, so measures to reduce secondary injury are needed. Our previous study demonstrated that, at the front of the expanding secondary injury in the spinal cord, there is an ischemic area in which many neurons can still be rescued. Therefore, enhancement of blood circulation in the cord may be helpful, and indeed, we found that a traditional Chinese medicine, shu-xue-tong, efficiently reduces the secondary injury. The aim of the present study was to investigate the effect of reducing fibrinogen with Batroxobin, a drug widely used clinically for ischemia, in rats with spinal cord contusion. We found that both 2 and 4 Batroxobin units (BU)/kg efficiently decreased the plasma fibrinogen, and 2 BU/kg significantly increased spinal blood flow, enhanced neuronal survival, mitigated astrocyte and microglia activation, and improved locomotor recovery. However, 4 BU/kg had no effect on the secondary spinal cord injury. These data suggest that Batroxobin has multiple beneficial effects on spinal cord injury, indicating a potential clinical application.

PubMed Disclaimer

References

    1. Cao HQ, Dong ED. An update on spinal cord injury research. Neurosci Bull. 2013;29:94–102. doi: 10.1007/s12264-012-1277-8. - DOI - PMC - PubMed
    1. Mautes AE, Weinzierl MR, Donovan F, Noble LJ. Vascular events after spinal cord injury: contribution to secondary pathogenesis. Phys Ther. 2000;80:673–687. - PubMed
    1. Kwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR. Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J. 2004;4:451–464. doi: 10.1016/j.spinee.2003.07.007. - DOI - PubMed
    1. Martirosyan NL, Feuerstein JS, Theodore N, Cavalcanti DD, Spetzler RF, Preul MC. Blood supply and vascular reactivity of the spinal cord under normal and pathological conditions. J Neurosurg Spine. 2011;15:238–251. doi: 10.3171/2011.4.SPINE10543. - DOI - PubMed
    1. Takigawa T, Yonezawa T, Yoshitaka T, Minaguchi J, Kurosaki M, Tanaka M, et al. Separation of the perivascular basement membrane provides a conduit for inflammatory cells in a mouse spinal cord injury model. J Neurotrauma. 2010;27:739–751. doi: 10.1089/neu.2009.1111. - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources