Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Aug 12;19(33):10866-75.
doi: 10.1002/chem.201301247. Epub 2013 Jul 12.

Redox-switchable ring-closing metathesis: catalyst design, synthesis, and study

Affiliations

Redox-switchable ring-closing metathesis: catalyst design, synthesis, and study

Kuppuswamy Arumugam et al. Chemistry. .

Abstract

High yielding syntheses of 1-(ferrocenylmethyl)-3-mesitylimidazolium iodide (1) and 1-(ferrocenylmethyl)-3-mesitylimidazol-2-ylidene (2) were developed. Complexation of 2 to [{Ir(cod)Cl}2] (cod=cis,cis-1,5-cyclooctadiene) or [Ru(PCy3)Cl2(=CH-o-O-iPrC6H4)] (Cy=cyclohexyl) afforded 3 ([Ir(2)(cod)Cl]) and 5 ([Ru(2)Cl2(=CH-o-O-iPrC6H4)]), respectively. Complex 4 ([Ir(2)(CO)2Cl]) was obtained by bubbling carbon monoxide through a solution of 3 in CH2Cl2. Spectroelectrochemical IR analysis of 4 revealed that the oxidation of the ferrocene moiety in 2 significantly reduced the electron-donating ability of the N-heterocyclic carbene ligand (ΔTEP=9 cm(-1); TEP=Tolman electronic parameter). The oxidation of 5 with [Fe(η(5)-C5H4COMe)Cp][BF4] as well as the subsequent reduction of the corresponding product [5][BF4] with decamethylferrocene (Fc*) each proceeded in greater than 95% yield. Mössbauer, UV/Vis and EPR spectroscopy analysis confirmed that [5][BF4] contained a ferrocenium species, indicating that the iron center was selectively oxidized over the ruthenium center. Complexes 5 and [5][BF4] were found to catalyze the ring-closing metathesis (RCM) of diethyl diallylmalonate with observed pseudo-first-order rate constants (k(obs)) of 3.1×10(-4) and 1.2×10(-5) s(-1), respectively. By adding suitable oxidants or reductants over the course of a RCM reaction, complex 5 was switched between different states of catalytic activity. A second-generation N-heterocyclic carbene that featured a 1',2',3',4',5'- pentamethylferrocenyl moiety (10) was also prepared and metal complexes containing this ligand were found to undergo iron-centered oxidations at lower potentials than analogous complexes supported by 2 (0.30-0.36 V vs. 0.56-0.62 V, respectively). Redox switching experiments using [Ru(10)Cl2(=CH-o-O-iPrC6H4)] revealed that greater than 94% of the initial catalytic activity was restored after an oxidation-reduction cycle.

Keywords: ferrocene; homogeneous catalysis; olefin metathesis; redox-switchable catalysis; ruthenium; spectroelectrochemistry.

PubMed Disclaimer

LinkOut - more resources