Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jan;102(1):80-8.
doi: 10.1002/jbm.b.32984. Epub 2013 Jul 13.

Osteoconductivity and biodegradation of synthetic bone substitutes with different tricalcium phosphate contents in rabbits

Affiliations

Osteoconductivity and biodegradation of synthetic bone substitutes with different tricalcium phosphate contents in rabbits

Cheryl Yang et al. J Biomed Mater Res B Appl Biomater. 2014 Jan.

Abstract

Various synthetic bone substitutes have been developed to reconstruct the bony defects that clinicians often encounter during surgical procedures. Among various synthetic bone substitutes, calcium phosphate (Ca-P) ceramics have been investigated because their composition and structure are similar to those of human bone. We evaluated the bone healing and biodegradation patterns of three types of Ca-P ceramic particle with various hydroxyapatite (HA)/β-tricalcium phosphate (β-TCP) weight ratio: pure β-TCP, biphasic Ca-P (BCP) with a HA/β-TCP weight ratio of 60/40 (BCP 60/40), and BCP with an HA/β-TCP weight ratio of 20/80 (BCP 20/80). Four 8-mm-diameter defects were created in ten rabbits. Three of the defects in each rabbit were separately and randomly filled with one of the three experimental Ca-P ceramic particles, and the fourth was filled with blood clots (control). The specimens were harvested at 2 and 8 weeks post-surgery. The histologic and histometric findings revealed that the augmented space and new bone formation were significantly better for all three Ca-P ceramics than for the control group at both 2 and 8 weeks (p < 0.05). Compared to the pure β-TCP, the two BCP groups were found to provide a larger amount of newly formed bone and bone density at the 2- and 8-week post-operative periods (p < 0.05). Throughout the observation period, BCP 60/40 and BCP 20/80 exhibited a similar bone healing and biodegradation patterns with regard to both individual particles and the total augmented area in vivo.

Keywords: beta tricalcium phosphate; biodegradation; bone regeneration; hydroxyapatite; synthetic bone graft.

PubMed Disclaimer

Publication types

LinkOut - more resources