Analog VLSI Biophysical Neurons and Synapses With Programmable Membrane Channel Kinetics
- PMID: 23853338
- DOI: 10.1109/TBCAS.2010.2048566
Analog VLSI Biophysical Neurons and Synapses With Programmable Membrane Channel Kinetics
Abstract
We present and characterize an analog VLSI network of 4 spiking neurons and 12 conductance-based synapses, implementing a silicon model of biophysical membrane dynamics and detailed channel kinetics in 384 digitally programmable parameters. Each neuron in the analog VLSI chip (NeuroDyn) implements generalized Hodgkin-Huxley neural dynamics in 3 channel variables, each with 16 parameters defining channel conductance, reversal potential, and voltage-dependence profile of the channel kinetics. Likewise, 12 synaptic channel variables implement a rate-based first-order kinetic model of neurotransmitter and receptor dynamics, accounting for NMDA and non-NMDA type chemical synapses. The biophysical origin of all 384 parameters in 24 channel variables supports direct interpretation of the results of adapting/tuning the parameters in terms of neurobiology. We present experimental results from the chip characterizing single neuron dynamics, single synapse dynamics, and multi-neuron network dynamics showing phase-locking behavior as a function of synaptic coupling strength. Uniform temporal scaling of the dynamics of membrane and gating variables is demonstrated by tuning a single current parameter, yielding variable speed output exceeding real time. The 0.5 CMOS chip measures 3 mm 3 mm, and consumes 1.29 mW.
LinkOut - more resources
Full Text Sources
Other Literature Sources
