Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jul 15;5(1):36.
doi: 10.1186/1758-5996-5-36.

Predictive models for type 2 diabetes onset in middle-aged subjects with the metabolic syndrome

Affiliations

Predictive models for type 2 diabetes onset in middle-aged subjects with the metabolic syndrome

Michal Ozery-Flato et al. Diabetol Metab Syndr. .

Abstract

Objective: To investigate the predictive value of different biomarkers for the incidence of type 2 diabetes mellitus (T2DM) in subjects with metabolic syndrome.

Methods: A prospective study of 525 non-diabetic, middle-aged Lithuanian men and women with metabolic syndrome but without overt atherosclerotic diseases during a follow-up period of two to four years. We used logistic regression to develop predictive models for incident cases and to investigate the association between various markers and the onset of T2DM.

Results: Fasting plasma glucose (FPG), body mass index (BMI), and glycosylated haemoglobin can be used to predict diabetes onset with a high level of accuracy and each was shown to have a cumulative predictive value. The estimated area under the receiver-operating characteristic curve (AUC) for this combination was 0.92. The oral glucose tolerance test (OGTT) did not show cumulative predictive value. Additionally, progression to diabetes was associated with high values of aortic pulse-wave velocity (aPWV).

Conclusion: T2DM onset in middle-aged metabolic syndrome subjects can be predicted with remarkable accuracy using the combination of FPG, BMI, and HbA1c, and is related to elevated aPWV measurements.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Comparison of prediction models. ROC curves of four diabetes onset prediction models: FPG-model, BMI-model, HbA1c-model, and a FPG-BMI-HbA1c-model. All models were adjusted for the gender variable.

References

    1. Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Arterioscler Thromb Vasc Biol. 2004;24:e13–e18. - PubMed
    1. Sattar N, McConnachie A, Shaper AG, Blauw GJ, Buckley BM, De Craen AJ, Ford I, Forouhi NG, Freeman DJ, Jukema JW, Lennon L, Macfarlane PW, Murphy MB, Packard CJ, Stott DJ, Westendorp RG, Whincup PH, Shepherd J, Wannamethee SG. Can metabolic syndrome usefully predict cardiovascular disease and diabetes? Outcome data from two prospective studies. Lancet. 2008;371:1927–1935. doi: 10.1016/S0140-6736(08)60602-9. - DOI - PubMed
    1. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365:1415–1428. doi: 10.1016/S0140-6736(05)66378-7. - DOI - PubMed
    1. Hanson RL, Imperatore G, Bennett PH, Knowler WC. Components of the “metabolic syndrome” and incidence of type 2 diabetes. Diabetes. 2002;51:3120–3127. doi: 10.2337/diabetes.51.10.3120. - DOI - PubMed
    1. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, Spertus JA, Costa F. Diagnosis and management of the metabolic syndrome. An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Executive summary. Cardiol Rev. 2005;13:322–327. - PubMed

LinkOut - more resources