An observational study of circulating tumor cells and (18)F-FDG PET uptake in patients with treatment-naive non-small cell lung cancer
- PMID: 23861795
- PMCID: PMC3702496
- DOI: 10.1371/journal.pone.0067733
An observational study of circulating tumor cells and (18)F-FDG PET uptake in patients with treatment-naive non-small cell lung cancer
Abstract
Introduction: We investigated the relationship of circulating tumor cells (CTCs) in non-small cell lung cancer (NSCLC) with tumor glucose metabolism as defined by (18)F-fluorodeoxyglucose (FDG) uptake since both have been associated with patient prognosis.
Materials & methods: We performed a retrospective screen of patients at four medical centers who underwent FDG PET-CT imaging and phlebotomy prior to a therapeutic intervention for NSCLC. We used an Epithelial Cell Adhesion Molecule (EpCAM) independent fluid biopsy based on cell morphology for CTC detection and enumeration (defined here as High Definition CTCs or "HD-CTCs"). We then correlated HD-CTCs with quantitative FDG uptake image data calibrated across centers in a cross-sectional analysis.
Results: We assessed seventy-one NSCLC patients whose median tumor size was 2.8 cm (interquartile range, IQR, 2.0-3.6) and median maximum standardized uptake value (SUVmax) was 7.2 (IQR 3.7-15.5). More than 2 HD-CTCs were detected in 63% of patients, whether across all stages (45 of 71) or in stage I disease (27 of 43). HD-CTCs were weakly correlated with partial volume corrected tumor SUVmax (r = 0.27, p-value = 0.03) and not correlated with tumor diameter (r = 0.07; p-value = 0.60). For a given partial volume corrected SUVmax or tumor diameter there was a wide range of detected HD-CTCs in circulation for both early and late stage disease.
Conclusions: CTCs are detected frequently in early-stage NSCLC using a non-EpCAM mediated approach with a wide range noted for a given level of FDG uptake or tumor size. Integrating potentially complementary biomarkers like these with traditional patient data may eventually enhance our understanding of clinical, in vivo tumor biology in the early stages of this deadly disease.
Conflict of interest statement
Figures
References
-
- Tanaka F, Yoneda K, Kondo N, Hashimoto M, Takuwa T, et al. (2009) Circulating tumor cell as a diagnostic marker in primary lung cancer. Clinical Cancer Res 15: 6980–6986. - PubMed
-
- James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92: 897–965. - PubMed
-
- Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK (2001) Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 285: 914–924. - PubMed
-
- van Tinteren H, Hoekstra OS, Smit EF, van den Bergh JH, Schreurs AJ, et al. (2002) Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet 359: 1388–1393. - PubMed
-
- Warburg O (1956) On respiratory impairment in cancer cells. Science 124: 269–270. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
