Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2013 Jul 5;8(7):e67733.
doi: 10.1371/journal.pone.0067733. Print 2013.

An observational study of circulating tumor cells and (18)F-FDG PET uptake in patients with treatment-naive non-small cell lung cancer

Affiliations
Observational Study

An observational study of circulating tumor cells and (18)F-FDG PET uptake in patients with treatment-naive non-small cell lung cancer

Viswam S Nair et al. PLoS One. .

Abstract

Introduction: We investigated the relationship of circulating tumor cells (CTCs) in non-small cell lung cancer (NSCLC) with tumor glucose metabolism as defined by (18)F-fluorodeoxyglucose (FDG) uptake since both have been associated with patient prognosis.

Materials & methods: We performed a retrospective screen of patients at four medical centers who underwent FDG PET-CT imaging and phlebotomy prior to a therapeutic intervention for NSCLC. We used an Epithelial Cell Adhesion Molecule (EpCAM) independent fluid biopsy based on cell morphology for CTC detection and enumeration (defined here as High Definition CTCs or "HD-CTCs"). We then correlated HD-CTCs with quantitative FDG uptake image data calibrated across centers in a cross-sectional analysis.

Results: We assessed seventy-one NSCLC patients whose median tumor size was 2.8 cm (interquartile range, IQR, 2.0-3.6) and median maximum standardized uptake value (SUVmax) was 7.2 (IQR 3.7-15.5). More than 2 HD-CTCs were detected in 63% of patients, whether across all stages (45 of 71) or in stage I disease (27 of 43). HD-CTCs were weakly correlated with partial volume corrected tumor SUVmax (r = 0.27, p-value = 0.03) and not correlated with tumor diameter (r = 0.07; p-value = 0.60). For a given partial volume corrected SUVmax or tumor diameter there was a wide range of detected HD-CTCs in circulation for both early and late stage disease.

Conclusions: CTCs are detected frequently in early-stage NSCLC using a non-EpCAM mediated approach with a wide range noted for a given level of FDG uptake or tumor size. Integrating potentially complementary biomarkers like these with traditional patient data may eventually enhance our understanding of clinical, in vivo tumor biology in the early stages of this deadly disease.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have the following interest. Peter Kuhn, Kelly Bethel, and Jorge Nieva have an ownership interest in Epic Sciences, which has licensed the HD-CTC technology used in this study. There are no further patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.

Figures

Figure 1
Figure 1. Detecting Putative DAPI(+), CK(+), CD45(-) HD-CTCs by Fluid Biopsy.
A representative image of High Definition Circulating Tumor Cells (HD-CTCs) from a Stanford patient with stage I non-small cell lung cancer shown in composite immunofluorescence (A) and by Wright-Giemsa brightfield microscopy (B). HD-CTCs are characterized as 4′,6-diamidino-2-phenylindole (DAPI) positive with a nucleus that is larger than surrounding white blood cells (Blue, C), cytokeratin (CK) positive (Red, D) and CD45 leukocyte marker negative (Green, E).
Figure 2
Figure 2. Non-small Cell Lung Cancer FDG PET-CT Imaging Features.
A three dimensional, maximum intensity projection, whole body 18F-FDG PET-CT (left). Physiologic uptake is seen in the brain, heart and liver with excretion through the renal pelvis and bladder. This tumor showed an intense FDG uptake with SUVmax of 19, SUVmean of 9.6, and TLG of 65.6 using a 50% SUVmax threshold (upper right). On CT, the lesion volume was estimated at 6.0 cm3 with a maximum diameter of 22 mm (lower right).
Figure 3
Figure 3. FDG Uptake and CTC Features Correlation Matrix*.
TLG = Total Lesion Glycolysis; SUV = Standardized Uptake Value; PVC = Partial Volume Corrected; 10 M WBC = 10 Million White Blood Cells. Bolded numbers are significant by p-value <0.05. Half of the matrix only is presented since it is symmetric around one and correlations are shaded by the magnitude of correlation. *Spearman rank correlations are shown for 62 of 71 patients with data extracted by PET-VCAR.
Figure 4
Figure 4. HD-CTC Scatter Plots for SUVmaxPVC and CT diameter*.
Non-metastatic patients are highlighted in red (see methods for definition) and the axes are shown as log2(x,y) for ease of interpretation. Increasing SUVmaxPVC (left) was weakly correlated (r = 0.27, p-value = 0.03) with increasing HD-CTC/10 M WBC count compared to tumor diameter on CT (right; r = 0.07, p-value = 0.60), which showed no correlation. *Shown for 62 of 71 patients with data extracted by PET-VCAR.

References

    1. Tanaka F, Yoneda K, Kondo N, Hashimoto M, Takuwa T, et al. (2009) Circulating tumor cell as a diagnostic marker in primary lung cancer. Clinical Cancer Res 15: 6980–6986. - PubMed
    1. James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92: 897–965. - PubMed
    1. Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK (2001) Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 285: 914–924. - PubMed
    1. van Tinteren H, Hoekstra OS, Smit EF, van den Bergh JH, Schreurs AJ, et al. (2002) Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet 359: 1388–1393. - PubMed
    1. Warburg O (1956) On respiratory impairment in cancer cells. Science 124: 269–270. - PubMed

Publication types

MeSH terms