In vivo proton range verification: a review
- PMID: 23863203
- DOI: 10.1088/0031-9155/58/15/R131
In vivo proton range verification: a review
Abstract
Protons are an interesting modality for radiotherapy because of their well defined range and favourable depth dose characteristics. On the other hand, these same characteristics lead to added uncertainties in their delivery. This is particularly the case at the distal end of proton dose distributions, where the dose gradient can be extremely steep. In practice however, this gradient is rarely used to spare critical normal tissues due to such worries about its exact position in the patient. Reasons for this uncertainty are inaccuracies and non-uniqueness of the calibration from CT Hounsfield units to proton stopping powers, imaging artefacts (e.g. due to metal implants) and anatomical changes of the patient during treatment. In order to improve the precision of proton therapy therefore, it would be extremely desirable to verify proton range in vivo, either prior to, during, or after therapy. In this review, we describe and compare state-of-the art in vivo proton range verification methods currently being proposed, developed or clinically implemented.
Similar articles
-
openPR - A computational tool for CT conversion assessment with proton radiography.Med Phys. 2021 Jan;48(1):387-396. doi: 10.1002/mp.14571. Epub 2020 Nov 21. Med Phys. 2021. PMID: 33125725
-
Calibration of CT Hounsfield units for proton therapy treatment planning: use of kilovoltage and megavoltage images and comparison of parameterized methods.Phys Med Biol. 2013 Jun 21;58(12):4255-76. doi: 10.1088/0031-9155/58/12/4255. Epub 2013 May 29. Phys Med Biol. 2013. PMID: 23719506
-
Immobilization considerations for proton radiation therapy.Technol Cancer Res Treat. 2014 Jun;13(3):217-26. doi: 10.7785/tcrt.2012.500376. Epub 2013 Sep 20. Technol Cancer Res Treat. 2014. PMID: 24066953
-
Anatomical imaging for radiotherapy.Phys Med Biol. 2008 Jun 21;53(12):R151-91. doi: 10.1088/0031-9155/53/12/R01. Epub 2008 May 21. Phys Med Biol. 2008. PMID: 18495981 Review.
-
[Proton imaging applications for proton therapy: state of the art].Cancer Radiother. 2015 Apr;19(2):139-51; quiz 152-6. doi: 10.1016/j.canrad.2014.04.011. Epub 2015 Jan 29. Cancer Radiother. 2015. PMID: 25640216 Review. French.
Cited by
-
Inter-patient variations of radiation-induced normal-tissue changes in Gd-EOB-DTPA-enhanced hepatic MRI scans during fractionated proton therapy.Clin Transl Radiat Oncol. 2019 Apr 26;18:113-119. doi: 10.1016/j.ctro.2019.04.013. eCollection 2019 Sep. Clin Transl Radiat Oncol. 2019. PMID: 31341986 Free PMC article.
-
A New Method to Reconstruct in 3D the Emission Position of the Prompt Gamma Rays following Proton Beam Irradiation.Sci Rep. 2019 Dec 11;9(1):18820. doi: 10.1038/s41598-019-55349-7. Sci Rep. 2019. PMID: 31827167 Free PMC article.
-
Improving radiation physics, tumor visualisation, and treatment quantification in radiotherapy with spectral or dual-energy CT.J Appl Clin Med Phys. 2022 Jan;23(1):e13468. doi: 10.1002/acm2.13468. Epub 2021 Nov 7. J Appl Clin Med Phys. 2022. PMID: 34743405 Free PMC article. Review.
-
Using CBCT for pretreatment range check in proton therapy: a phantom study for prostate treatment by anterior-posterior beam.J Appl Clin Med Phys. 2015 Nov 8;16(6):472–483. doi: 10.1120/jacmp.v16i6.5212. J Appl Clin Med Phys. 2015. PMID: 26699545 Free PMC article.
-
Enhancing Patient-specific Quality Assurance in Carbon-ion Radiation Therapy: Recalculating Delivered Dose Distribution Using Log Data.In Vivo. 2025 Mar-Apr;39(2):1086-1093. doi: 10.21873/invivo.13913. In Vivo. 2025. PMID: 40010991 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical