Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jun;106(3):1423-9.
doi: 10.1603/ec12494.

Baseline toxicity of metaflumizone and lack of cross resistance between indoxacarb and metaflumizone in diamondback moth (Lepidoptera: Plutellidae)

Affiliations

Baseline toxicity of metaflumizone and lack of cross resistance between indoxacarb and metaflumizone in diamondback moth (Lepidoptera: Plutellidae)

Shem K Khakame et al. J Econ Entomol. 2013 Jun.

Abstract

Diamondback moth, Plutella xylostella (L.) is a serious insect pest of vegetables worldwide, and has evolved resistance to various kinds of insecticides. Studies were conducted to determine the baseline toxicity of metaflumizone and the possibility of cross-resistance between metaflumizone and indoxacarb, two sodium channel blocking insecticides (SCBIs), in field populations of P. xylostella from China. The variation in susceptibility to metaflumizone among 29 field populations of P. xylostella collected from 14 geographical locations in China was less than five-fold, with 50% lethal concentrations (LC50(s)) varying from 1.34 to 6.55 mg/liter. Limited variations in LC50(s) (less than five-fold, ranging from 1.76 to 8.16 mg/liter) were also observed in the four laboratory-selected strains with high levels of resistance to abamectin, spinosad, fipronil, or Bt toxin Cry1Ac. The toxicity of metaflumizone and indoxacarb was compared among 23 out of the 29 field populations. When compared with the susceptible Roth strain, the JN-09B population showed the highest level of resistance to indoxacarb (110-fold), but two-fold tolerance to metaflumizone. The other 22 populations (with 5- to 58-fold of resistance to indoxacarb) had 1- to three-fold tolerance to metaflumizone. Metaflumizone could provide an effective alternative insecticide for diamondback moth management. Although the field populations of P. xylostella tested with various levels of resistance to indoxacarb did not have cross-resistance to metaflumizone, metaflumizone should be rotated with other chemicals of different modes of action instead of indoxacarb.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources