A robust one-compartment fuel cell with a polynuclear cyanide complex as a cathode for utilizing H2O2 as a sustainable fuel at ambient conditions
- PMID: 23868499
- DOI: 10.1002/chem.201300783
A robust one-compartment fuel cell with a polynuclear cyanide complex as a cathode for utilizing H2O2 as a sustainable fuel at ambient conditions
Abstract
A robust one-compartment H2O2 fuel cell, which operates without membranes at room temperature, has been constructed by using a series of polynuclear cyanide complexes that contain Fe, Co, Mn, and Cr as cathodes, in sharp contrast to conventional H2 and MeOH fuel cells, which require membranes and high temperatures. A high open-circuit potential of 0.68 V was achieved by using Fe3[{Co(III)(CN)6}2] on a carbon cloth as the cathode and a Ni mesh as the anode of a H2O2 fuel cell by using an aqueous solution of H2O2 (0.30 M, pH 3) with a maximum power density of 0.45 mW cm(-2). The open-circuit potential and maximum power density of the H2O2 fuel cell were further increased to 0.78 V and 1.2 mW cm(-2), respectively, by operation under these conditions at pH 1. No catalytic activity of Co3[{Co(III)(CN)6}2] and Co3[{Fe(III)(CN)6}2] towards H2O2 reduction suggests that the N-bound Fe ions are active species for H2O2 reduction. H2O2 fuel cells that used Fe3[{Mn(III)(CN)6}2] and Fe3[{Cr(III)(CN)6}2] as the cathode exhibited lower performance compared with that using Fe3[{Co(III)(CN)6}2] as a cathode, because ligand isomerization of Fe3[{M(III)(CN)6}2] into (FeM2)[{Fe(II)(CN)6}2] (M = Cr or Mn) occurred to form inactive Fe-C bonds under ambient conditions, whereas no ligand isomerization of Fe3[{Co(III)(CN)6}2] occurred under the same reaction conditions. The importance of stable Fe(2+)-N bonds was further indicated by the high performance of the H2O2 fuel cells with Fe3[{Ir(III)(CN)6}2] and Fe3[{Rh(III)(CN)6}2], which also contained stable Fe(2+)-N bonds. The stable Fe(2+)-N bonds in Fe3[{Co(III)(CN)6}2], which lead to high activity for the electrocatalytic reduction of H2O2, allow Fe3[{Co(III)(CN)6}2] to act as a superior cathode in one-compartment H2O2 fuel cells.
Keywords: cathodes; cyanide complexes; fuel cells; heteropolynuclear complexes; hydrogen peroxide.
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources