Adenoviral vectors for prodrug activation-based gene therapy for cancer
- PMID: 23869779
- PMCID: PMC3947260
- DOI: 10.2174/18715206113139990309
Adenoviral vectors for prodrug activation-based gene therapy for cancer
Abstract
Cancer cell heterogeneity is a common feature - both between patients diagnosed with the same cancer and within an individual patient's tumor - and leads to widely different response rates to cancer therapies and the potential for the emergence of drug resistance. Diverse therapeutic approaches have been developed to combat the complexity of cancer, including individual treatment modalities designed to target tumor heterogeneity. This review discusses adenoviral vectors and how they can be modified to replicate in a cancer-specific manner and deliver therapeutic genes under multi-tiered regulation to target tumor heterogeneity, including heterogeneity associated with cancer stem cell-like subpopulations. Strategies that allow for combination of prodrug-activation gene therapy with a novel replication-conditional, heterogeneous tumor-targeting adenovirus are discussed, as are the benefits of using adenoviral vectors as tumor-targeting oncolytic vectors. While the anticancer activity of many adenoviral vectors has been well established in preclinical studies, only limited successes have been achieved in the clinic, indicating a need for further improvements in activity, specificity, tumor cell delivery and avoidance of immunogenicity.
Conflict of interest statement
Figures
References
-
- Bauerschmitz GJ, Barker SD, Hemminki A. Adenoviral gene therapy for cancer: from vectors to targeted and replication competent agents (review) Int J Oncol. 2002;21(6):1161–1174. - PubMed
-
- Kasuya H, Takeda S, Nomoto S, Nakao A. The potential of oncolytic virus therapy for pancreatic cancer. Cancer Gene Ther. 2005;12(9):725–736. - PubMed
-
- Grand RJ, Parkhill J, Szestak T, Rookes SM, Roberts S, Gallimore PH. Definition of a major p53 binding site on Ad2E1B58K protein and a possible nuclear localization signal on the Ad12E1B54K protein. Oncogene. 1999;18(4):955–965. - PubMed
-
- Steegenga WT, Riteco N, Jochemsen AG, Fallaux FJ, Bos JL. The large E1B protein together with the E4orf6 protein target p53 for active degradation in adenovirus infected cells. Oncogene. 1998;16(3):349–357. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources