Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jul;6(2):110-8.
doi: 10.1016/0920-1211(90)90085-a.

Recurrent spontaneous hippocampal seizures in the rat as a chronic sequela to limbic status epilepticus

Affiliations

Recurrent spontaneous hippocampal seizures in the rat as a chronic sequela to limbic status epilepticus

E W Lothman et al. Epilepsy Res. 1990 Jul.

Abstract

A period of continuous hippocampal stimulation (CHS) establishes an acute condition of self-sustaining limbic status epilepticus (SSLSE) which is followed by chronic neuropathological changes reminiscent of hippocampal sclerosis encountered in epileptic patients. In the chronic (greater than or equal to 1 month) condition following CHS-induced SSLSE, extended electrographic monitoring in the hippocampus revealed spontaneous recurrent paroxysmal discharges. All 6 animals studied had persistent interictal spiking; 3 had multiple fully developed electrographic seizures. There was a marked diminution of paired pulse inhibition, demonstrated by a protocol known to reflect the potency of inhibition mediated by GABAA receptors. Hippocampal slices from animals that had previously experienced CHS-induced SSLSE demonstrated an increased excitability relative to slices from control animals as evidenced by epileptiform bursting in increased extracellular potassium ([K+]0) and decreased extracellular calcium ([Ca2+]0). These studies establish that CHS-induced SSLSE in rats provides an experimental model with recurrent spontaneous hippocampal seizures. Based on electrophysiological data we suggest that a decrease in GABA-mediated inhibition and/or altered sensitivity to extracellular ions may play roles in the development of such seizures.

PubMed Disclaimer

Publication types