Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun 19;33(25):3342-50.
doi: 10.1038/onc.2013.283. Epub 2013 Jul 22.

Prdm5 suppresses Apc(Min)-driven intestinal adenomas and regulates monoacylglycerol lipase expression

Affiliations
Free article

Prdm5 suppresses Apc(Min)-driven intestinal adenomas and regulates monoacylglycerol lipase expression

G G Galli et al. Oncogene. .
Free article

Abstract

PRDM proteins are tissue-specific transcription factors often deregulated in diseases, particularly in cancer where different members have been found to act as oncogenes or tumor suppressors. PRDM5 is a poorly characterized member of the PRDM family for which several studies have reported a high frequency of promoter hypermethylation in cancer types of gastrointestinal origin. We report here the characterization of Prdm5 knockout mice in the context of intestinal carcinogenesis. We demonstrate that loss of Prdm5 increases the number of adenomas throughout the murine small intestine on an Apc(Min) background. By using the genome-wide ChIP-seq (chromatin immunoprecipitation (ChIP) followed by DNA sequencing) and transcriptome analyses we identify loci encoding proteins involved in metabolic processes as prominent PRDM5 targets and characterize monoacylglycerol lipase (Mgll) as a direct PRDM5 target in human colon cancer cells and in Prdm5 mutant mouse intestines. Moreover, we report the downregulation of PRDM5 protein expression in human colon neoplastic lesions. In summary, our data provide the first causal link between Prdm5 loss and intestinal carcinogenesis, and uncover an extensive and novel PRDM5 target repertoire likely facilitating the tumor-suppressive functions of PRDM5.

PubMed Disclaimer

Publication types

MeSH terms