Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jul 12;8(7):e68095.
doi: 10.1371/journal.pone.0068095. Print 2013.

Best practices and joint calling of the HumanExome BeadChip: the CHARGE Consortium

Affiliations

Best practices and joint calling of the HumanExome BeadChip: the CHARGE Consortium

Megan L Grove et al. PLoS One. .

Abstract

Genotyping arrays are a cost effective approach when typing previously-identified genetic polymorphisms in large numbers of samples. One limitation of genotyping arrays with rare variants (e.g., minor allele frequency [MAF] <0.01) is the difficulty that automated clustering algorithms have to accurately detect and assign genotype calls. Combining intensity data from large numbers of samples may increase the ability to accurately call the genotypes of rare variants. Approximately 62,000 ethnically diverse samples from eleven Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium cohorts were genotyped with the Illumina HumanExome BeadChip across seven genotyping centers. The raw data files for the samples were assembled into a single project for joint calling. To assess the quality of the joint calling, concordance of genotypes in a subset of individuals having both exome chip and exome sequence data was analyzed. After exclusion of low performing SNPs on the exome chip and non-overlap of SNPs derived from sequence data, genotypes of 185,119 variants (11,356 were monomorphic) were compared in 530 individuals that had whole exome sequence data. A total of 98,113,070 pairs of genotypes were tested and 99.77% were concordant, 0.14% had missing data, and 0.09% were discordant. We report that joint calling allows the ability to accurately genotype rare variation using array technology when large sample sizes are available and best practices are followed. The cluster file from this experiment is available at www.chargeconsortium.com/main/exomechip.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: Mark Hansen is an employee of Illumina, Inc. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials. All authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Results of CHARGE exome chip genotype calls compared to exome sequence data in 530 individuals.

References

    1. Korn JM, Kuruvilla FG, McCarroll SA, Wysoker A, Nemesh J, et al. (2008) Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat Genet 40: 1253–1260. - PMC - PubMed
    1. Ritchie ME, Liu R, Carvalho BS, Irizarry RA (2011) Comparing genotyping algorithms for Illumina’s Infinium whole-genome SNP BeadChips. BMC Bioinformatics 12: 68. - PMC - PubMed
    1. Psaty BM, O’Donnell CJ, Gudnason V, Lunetta KL, Folsom AR, et al. (2009) Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium: design of prospective meta-analyses of genome-wide association studies from 5 cohorts. Circ Cardiovasc Genet 2: 73–80. - PMC - PubMed
    1. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81: 559–575. - PMC - PubMed
    1. Gudnason V, Sigurdsson G, Nissen H, Humphries SE (1997) Common founder mutation in the LDL receptor gene causing familial hypercholesterolaemia in the Icelandic population. Hum Mutat 10: 36–44. - PubMed

Publication types

Grants and funding