Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jul 31;61(30):7366-72.
doi: 10.1021/jf401693m. Epub 2013 Jul 22.

Recovery of isoflavone aglycones from soy whey wastewater using foam fractionation and acidic hydrolysis

Affiliations

Recovery of isoflavone aglycones from soy whey wastewater using foam fractionation and acidic hydrolysis

Wei Liu et al. J Agric Food Chem. .

Abstract

The purpose of this work was to recover isoflavone aglycones from industrial soy whey wastewater, where the isoflavone aglycones mainly existed in the form of β-glycosides. First, foam fractionation was used for effectively concentrating the total soy isoflavones, including isoflavone aglycones and β-glycosides, from the wastewater. Fourier transform infrared spectroscopy indicated the existence of complexes of soy isoflavones and soy proteins. When soy proteins were used as the collectors, a high enrichment ratio of 3.68 was obtained under the optimal operating conditions of temperature of 50 °C, pH of 5.0, volumetric air flow rate of 100 mL/min, and loading liquid height of 400 mm. Subsequently, acidic hydrolysis was used for hydrolyzing β-glycosides in the foamate into aglycones. Using response surface methodology, a hydrolytic percentage could reach 96% under the optimum hydrolysis conditions of hydrolytic temperature of 80 °C, hydrochloric acid concentration of 1.37 mol/L, and hydrolytic time of 90 min.

PubMed Disclaimer

Publication types

LinkOut - more resources