Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Sep 15;454(1):354-66.
doi: 10.1016/j.ijpharm.2013.07.032. Epub 2013 Jul 19.

Design, characterization, and in vitro cellular inhibition and uptake of optimized genistein-loaded NLC for the prevention of posterior capsular opacification using response surface methodology

Affiliations

Design, characterization, and in vitro cellular inhibition and uptake of optimized genistein-loaded NLC for the prevention of posterior capsular opacification using response surface methodology

Wenji Zhang et al. Int J Pharm. .

Abstract

This study was to design an innovative nanostructured lipid carrier (NLC) for drug delivery of genistein applied after cataract surgery for the prevention of posterior capsular opacification. NLC loaded with genistein (GEN-NLC) was produced with Compritol 888 ATO, Gelucire 44/14 and Miglyol 812N, stabilized by Solutol(®) HS15 by melt emulsification method. A 2(4) central composite design of 4 independent variables was performed for optimization. Effects of drug concentration, Gelucire 44/14 concentration in total solid lipid, liquid lipid concentration, and surfactant concentration on the mean particle size, polydispersity index, zeta potential and encapsulation efficiency were investigated. Analysis of variance (ANOVA) statistical test was used to assess the optimization. The optimized GEN-NLC showed a homogeneous particle size of 90.16 nm (with PI=0.33) of negatively charged surface (-25.08 mv) and high encapsulation efficiency (91.14%). Particle morphology assessed by TEM revealed a spherical shape. DSC analyses confirmed that GEN was mostly entrapped in amorphous state. In vitro release experiments indicated a prolonged and controlled genistein release for 72 h. In vitro growth inhibition assay showed an effective growth inhibition of GEN-NLCs on human lens epithelial cells (HLECs). Preliminary cellular uptake test proved a enhanced penetration of genistein into HLECs when delivered in NLC.

Keywords: Cellular uptake; Central composite design; Genistein; Inhibition; Nanostructured lipid carrier; Posterior capsular opacification.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources