Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Jul 4;14(7):14008-23.
doi: 10.3390/ijms140714008.

Toll-like receptors in atherosclerosis

Affiliations
Review

Toll-like receptors in atherosclerosis

Mika Falck-Hansen et al. Int J Mol Sci. .

Abstract

Atherosclerosis, the leading cause of cardiovascular disease (CVD), is driven by inflammation. Increasing evidence suggests that toll-like receptors (TLRs) are key orchestrators of the atherosclerotic disease process. Interestingly, a distinct picture is being revealed for individual receptors in atherosclerosis. TLRs exhibit a complex nature enabling the detection of multiple motifs named danger-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). Activation of these receptors triggers an intracellular signalling cascade mediated through MyD88 or TRIF, leading to the production of pro- and anti-inflammatory cytokines. In this review we explore key novel findings pertaining to TLR signalling in atherosclerosis, including recently described endosomal TLRs and future directions in TLR research.

PubMed Disclaimer

Figures

Figure 1
Figure 1
TLR signalling pathways. MyD88 is an adaptor protein, critical in mediating the signalling of all TLRs except TLR3. TIRAP/MAL participates in TLR2 and TLR4 MyD88-mediated signal transduction, in that its C-terminus TIRAP/MAL-TIR bridges TLR2 and TLR4 with MyD88 [56,57]. In addition to a TIR-domain, MyD88 harbours a death domain (DD). Upon PAMP recognition by TLRs, its DD interacts with the DD of a member of the IL-1 receptor-associated kinase (IRAK) family, IRAK-4, which consists of a DD and a kinase-like domain. The formation of the MyD88-IRAK-4 complex recruits IRAK-1 and IRAK-2, bringing their kinase-like domains close, resulting in phosphorylation of IRAKs and their subsequent activation. Phosphorylated IRAK-1 or IRAK-2 leave the complex and interact with tumour necrosis factor receptor associated factor 6 (TRAF6), an E3 ubiquitin ligase, to generate Lys63-linked polyubiquitination [58,59]. These polyubiquitin chains bind a complex of TGF-β activated kinase-1 (TAK-1) and TAK-1 binding proteins (TAB) 1, 2 and 3—resulting in TAK1 activation. Activated TAK-1 phosphorylates IKKβ. The subsequent activation of the IKK complex, consisting of IKKα, IKKβ, and NEMO/IKKγ, induces phosphorylation of IKKα and MAP kinases, allowing for the activation of transcription factors and production of inflammatory cytokines.

References

    1. Lozano R., Naghavi M., Foreman K., Lim S., Shibuya K., Aboyans V., Abraham J., Adair T., Aggarwal R., Ahn S.Y., et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–2128. - PMC - PubMed
    1. Robbins J.M., Webb D.A., Sciamanna C.N. Cardiovascular comorbidities among public health clinic patients with diabetes: The Urban. Diabetics Study. BMC Public Health. 2005;5:15. - PMC - PubMed
    1. Libby P., Okamoto Y., Rocha V.Z., Folco E. Inflammation in atherosclerosis: Transition from theory to practice. Circ. J. 2010;74:213–220. - PubMed
    1. Laberge M.A., Moore K.J., Freeman M.W. Atherosclerosis and innate immune signaling. Ann. Med. 2005;37:130–140. - PubMed
    1. Frantz S., Ertl G., Bauersachs J. Mechanisms of disease: Toll-like receptors in cardiovascular disease. Nat. Clin. Pract. Cardiovasc. Med. 2007;4:444–454. - PubMed

Publication types

Substances