Perspectives on zebrafish models of hallucinogenic drugs and related psychotropic compounds
- PMID: 23883191
- PMCID: PMC3750682
- DOI: 10.1021/cn400090q
Perspectives on zebrafish models of hallucinogenic drugs and related psychotropic compounds
Abstract
Among different classes of psychotropic drugs, hallucinogenic agents exert one of the most prominent effects on human and animal behaviors, markedly altering sensory, motor, affective, and cognitive responses. The growing clinical and preclinical interest in psychedelic, dissociative, and deliriant hallucinogens necessitates novel translational, sensitive, and high-throughput in vivo models and screens. Primate and rodent models have been traditionally used to study cellular mechanisms and neural circuits of hallucinogenic drugs' action. The utility of zebrafish ( Danio rerio ) in neuroscience research is rapidly growing due to their high physiological and genetic homology to humans, ease of genetic manipulation, robust behaviors, and cost effectiveness. Possessing a fully characterized genome, both adult and larval zebrafish are currently widely used for in vivo screening of various psychotropic compounds, including hallucinogens and related drugs. Recognizing the growing importance of hallucinogens in biological psychiatry, here we discuss hallucinogenic-induced phenotypes in zebrafish and evaluate their potential as efficient preclinical models of drug-induced states in humans.
Figures

Similar articles
-
Acute behavioral effects of deliriant hallucinogens atropine and scopolamine in adult zebrafish.Behav Brain Res. 2019 Feb 1;359:274-280. doi: 10.1016/j.bbr.2018.10.033. Epub 2018 Oct 23. Behav Brain Res. 2019. PMID: 30366034
-
Unique and potent effects of acute ibogaine on zebrafish: the developing utility of novel aquatic models for hallucinogenic drug research.Behav Brain Res. 2013 Jan 1;236(1):258-269. doi: 10.1016/j.bbr.2012.08.041. Epub 2012 Sep 4. Behav Brain Res. 2013. PMID: 22974549
-
Effects of hallucinogenic agents mescaline and phencyclidine on zebrafish behavior and physiology.Prog Neuropsychopharmacol Biol Psychiatry. 2012 Apr 27;37(1):194-202. doi: 10.1016/j.pnpbp.2012.01.003. Epub 2012 Jan 9. Prog Neuropsychopharmacol Biol Psychiatry. 2012. PMID: 22251567 Free PMC article.
-
Perspectives on experimental models of serotonin syndrome in zebrafish.Neurochem Int. 2013 May;62(6):893-902. doi: 10.1016/j.neuint.2013.02.018. Epub 2013 Feb 26. Neurochem Int. 2013. PMID: 23485557 Review.
-
Pharmacological analyses of learning and memory in zebrafish (Danio rerio).Pharmacol Biochem Behav. 2015 Dec;139 Pt B(0 0):103-11. doi: 10.1016/j.pbb.2015.03.006. Epub 2015 Mar 17. Pharmacol Biochem Behav. 2015. PMID: 25792292 Free PMC article. Review.
Cited by
-
Gene alteration in zebrafish exposed to a mixture of substances of abuse.Environ Pollut. 2021 Jun 1;278:116777. doi: 10.1016/j.envpol.2021.116777. Epub 2021 Feb 24. Environ Pollut. 2021. PMID: 33689951 Free PMC article.
-
Abuse potential of methylenedioxymethamphetamine (MDMA) and its derivatives in zebrafish: role of serotonin 5HT2-type receptors.Psychopharmacology (Berl). 2016 Aug;233(15-16):3031-9. doi: 10.1007/s00213-016-4352-4. Epub 2016 Jun 18. Psychopharmacology (Berl). 2016. PMID: 27318987
-
Using visual lateralization to model learning and memory in zebrafish larvae.Sci Rep. 2015 Mar 2;5:8667. doi: 10.1038/srep08667. Sci Rep. 2015. PMID: 25727677 Free PMC article.
-
Anti-Melanogenic Potential of Natural and Synthetic Substances: Application in Zebrafish Model.Molecules. 2023 Jan 20;28(3):1053. doi: 10.3390/molecules28031053. Molecules. 2023. PMID: 36770722 Free PMC article. Review.
-
Current approaches for the discovery of drugs that deter substance and drug abuse.Expert Opin Drug Discov. 2014 Nov;9(11):1319-31. doi: 10.1517/17460441.2014.956721. Epub 2014 Sep 24. Expert Opin Drug Discov. 2014. PMID: 25251069 Free PMC article. Review.
References
-
- Agid Y.; Buzsaki G.; Diamond D. M.; Frackowiak R.; Giedd J.; Girault J. A.; Grace A.; Lambert J. J.; Manji H.; Mayberg H.; Popoli M.; Prochiantz A.; Richter-Levin G.; Somogyi P.; Spedding M.; Svenningsson P.; Weinberger D. (2007) How can drug discovery for psychiatric disorders be improved?. Nat. Rev. Drug Discovery 6, 189–201. - PubMed
-
- LaPorte J. L.; Egan R. J.; Hart P. C.; Bergner C. L.; Cachat J. M.; Canavello P. R.; Kalueff A. V. (2010) Qui non proficit, deficit: experimental models for ’integrative’ research of affective disorders. J. Affective Disord. 121, 1–9. - PubMed
-
- Bountra C.; Oppermann U.; Heightman T. D. (2011) Animal models of epigenetic regulation in neuropsychiatric disorders. Curr. Top. Behav. Neurosci. 7, 281–322. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources