Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Feb;22(2):151-60.

Molar absorptivities of beta-NADH and beta-NADPH

  • PMID: 2389

Molar absorptivities of beta-NADH and beta-NADPH

J Ziegenhorn et al. Clin Chem. 1976 Feb.

Abstract

Re-investigating the accuracy of the commonly used values for molar absorptivities (epsilon) of beta-NADH and beta-NADPH at Hg 334, Hg 365, or 340 nm, we obtained the following results: The maximum of absorbance of NADH is shifted from about 340 nm at 0 degrees C to about 338.5 nm at 38 degrees C; the corresponding maxima of NADPH are located at about 0.5-nm longer wavelengths. In addition, the absorption curves of both coenzymes broaden with increasing temperature. For these reasons, the epsilon-values of NADH and NADPH are generally different from each other, and are temperature-dependent. Only at 334 nm are they almost identical and nearly independent of temperature. Therefore this wavelength is recommended for precise measurements. The epsilon-values of these coenzymes are influenced by ionic strength and pH. To determine the absolute values of the molar absorptivities, we performed the glutamate dehydrogenase or lactate dehydrogenase assay with carefully purified 2-oxoglutaric acid or pyruvic acid in the presence of excess coenzyme. The purity of the substrates was checked through differential scanning calorimetry, moisture analysis, gas-liquid chromatography, gas chromatography in combination with mass spectrometry, and nuclear magnetic resonance spectroscopy. The epsilon-values observed under the various conditions are about 1-7% higher than those currently used.

PubMed Disclaimer

Similar articles

Cited by