Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1990 Aug;123(2):192-8.

The effect of single versus double-strand substitution on halogenated pyrimidine-induced radiosensitization and DNA strand breakage in human tumor cells

Affiliations
  • PMID: 2389005
Comparative Study

The effect of single versus double-strand substitution on halogenated pyrimidine-induced radiosensitization and DNA strand breakage in human tumor cells

T S Lawrence et al. Radiat Res. 1990 Aug.

Abstract

To better understand the mechanism underlying halogenated pyrimidine-mediated cytotoxicity and radiosensitization in human tumor cells, a study was undertaken to determine the influence of unifilar (one DNA strand) versus bifilar (both DNA strands) substitution of thymidine by the halogenated bases 5-iodo-2'-deoxyuridine (IdUrd) and 5-bromo-2'-deoxyuridine (BrdUrd) in HT29 human colon cancer cells. Unifilar labeling was obtained by incubating cells with IdUrd or BrdUrd for one doubling time. Cells were incubated for at least three doublings to approximate bifilar substitution. Only IdUrd caused significant cytotoxicity, which correlated with incorporation into DNA. Both BrdUrd and IdUrd were potent radiosensitizers. Radiosensitization was linearly correlated with incorporation of both bases regardless of the number of strands in which thymidine was substituted. In contrast, the relationship between radiosensitization and DNA double-strand breakage was critically dependent in the case of IdUrd, but not for BrdUrd, on whether substitution was unifilar or bifilar. These findings suggest that incorporation is the best predictor of radiation sensitivity, and that the induction of DNA double-strand breaks alone does not account for radiosensitization mediated by halogenated pyrimidines in these human tumor cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources