Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Dec 15:50:387-92.
doi: 10.1016/j.bios.2013.06.055. Epub 2013 Jul 4.

Three-dimensional graphene micropillar based electrochemical sensor for phenol detection

Affiliations

Three-dimensional graphene micropillar based electrochemical sensor for phenol detection

Fei Liu et al. Biosens Bioelectron. .

Abstract

A three-dimensional (3D) graphene incorporated electrochemical sensor was constructed for sensitive enzyme based phenol detection. To form the 3D graphene structure, polydimethylsiloxane (PDMS) micropillars were fabricated in the microchannel by using a conventional photolithography and the surface was modified with 3-aminopropyltriethoxysilane. Then, the negatively charged graphene oxide sheets were electrostatically adsorbed on the PDMS micropillar surface, and reduced in the hydrazine vapor. The resultant 3D graphene film provides a conductive working electrode as well as an enzyme-mediated sensor with a large surface area. After bonded with an electrode patterned glass wafer, the 3D graphene based electrochemical sensor was produced. Using the 3D graphene as a working electrode, an excellent electron transfer property was demonstrated by cyclic voltammetry measurement in an electrolyte solution containing 1mM K3Fe(CN)6 and 0.1 M KCl. To utilize the 3D graphene as an enzyme sensor, tyrosinase enzymes were immobilized on the surface of the graphene micropillar, and the target phenol was injected in the microchannel. The enzyme catalytic reaction process was monitored by amperometric responses and the limit of detection for phenol was obtained as 50 nM, thereby suggesting that the 3D graphene micropillar structure enhances the enzyme biosensing capability not only by increasing the surface area for enzyme immobilization, but also by the superlative graphene conductivity property.

Keywords: Electrochemical sensor; Enzyme; Graphene; Micropilar; Phenol detection.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources