Mapping and kinetics of microglia/neuron cell-to-cell contacts in the 6-OHDA murine model of Parkinson's disease
- PMID: 23893349
- DOI: 10.1002/glia.22546
Mapping and kinetics of microglia/neuron cell-to-cell contacts in the 6-OHDA murine model of Parkinson's disease
Abstract
As neuroinflammatory processes are involved in the pathogenesis of Parkinson's disease (PD), we provide several key data describing the time-course of microglial accumulation in relation with behavioral alterations and neurodegeneration in a murine model of PD induced by intrastriatal injection of 6-hydroxydopamine (6-OHDA). Our study argues for a major role of microglia which accumulation is somehow early and transient in spite of the neuronal loss progression. Moreover, we observed less 6-OHDA-induced neurodegeneration associated with less inflammatory reaction in DAP-12 Knock-In mice. The direct cell-to-cell contacts that may support physical interactions between microglia and altered dopaminergic neurons are ill-defined, while it is currently hypothesized that microglia support an immune-mediated amplification of neurodegeneration by establishing a molecular cross talk with neurons. Indeed, we sought to map microglia/neuron appositions in substantia nigra (SN) of 6-OHDA injected C57Bl/6 mice and CX3CR1/(GFP/+) mice. Confocal immunofluorescence analyses followed by 3D reconstitutions reveal close appositions between the soma of TH+ neurons and microglial cell bodies and ramifications. Interestingly, some microglial ramifications penetrated TH(+) somas and about 40% of GFP(+) microglial cells in the injured SN harbored TH(+) intracytoplasmic inclusions. These results suggest a direct cross talk between neurons and microglia that may exert a microphagocytic activity toward TH+ neurons. Altogether, these results obtained in a murine PD model may participate in the understanding of microglial cells' function in neurodegenerative diseases.
Keywords: dopamine; neurodegeneration; neuroinflammation; substantia nigra.
Copyright © 2013 Wiley Periodicals, Inc.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials