Process-based expansion and neural differentiation of human pluripotent stem cells for transplantation and disease modeling
- PMID: 23893392
- PMCID: PMC4285152
- DOI: 10.1002/jnr.23245
Process-based expansion and neural differentiation of human pluripotent stem cells for transplantation and disease modeling
Abstract
Robust strategies for developing patient-specific, human, induced pluripotent stem cell (iPSC)-based therapies of the brain require an ability to derive large numbers of highly defined neural cells. Recent progress in iPSC culture techniques includes partial-to-complete elimination of feeder layers, use of defined media, and single-cell passaging. However, these techniques still require embryoid body formation or coculture for differentiation into neural stem cells (NSCs). In addition, none of the published methodologies has employed all of the advances in a single culture system. Here we describe a reliable method for long-term, single-cell passaging of PSCs using a feeder-free, defined culture system that produces confluent, adherent PSCs that can be differentiated into NSCs. To provide a basis for robust quality control, we have devised a system of cellular nomenclature that describes an accurate genotype and phenotype of the cells at specific stages in the process. We demonstrate that this protocol allows for the efficient, large-scale, cGMP-compliant production of transplantable NSCs from all lines tested. We also show that NSCs generated from iPSCs produced with the process described are capable of forming both glia defined by their expression of S100β and neurons that fire repetitive action potentials.
Keywords: cGMP; cellular models of disease; cellular therapy; differentiation; drug discovery; glia; iPSCs; methods; neural stem cells; neurons; nomenclature.
Copyright © 2013 Wiley Periodicals, Inc.
Figures
References
-
- Ausubel LJ, Lopez PM, Couture LA. GMP scale-up and banking of pluripotent stem cells for cellular therapy applications. Methods Mol Biol. 2011;767:147–159. - PubMed
-
- Bajpai R, Lesperance J, Kim M, Terskikh AV. Efficient propagation of single cells Accutase-dissociated human embryonic stem cells. Mol Reprod Dev. 2008;75:818–827. - PubMed
-
- Belmonte JC, Ellis J, Hochedlinger K, Yamanaka S. Induced pluripotent stem cells and reprogramming: seeing the science through the hype. Nat Rev Genet. 2009;10:878–883. - PubMed
-
- Bergstrom R, Strom S, Holm F, Feki A, Hovatta O. Xeno-free culture of human pluripotent stem cells. Methods Mol Biol. 2011;767:125–136. - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
