Axonal regeneration after spinal cord injury in zebrafish and mammals: differences, similarities, translation
- PMID: 23893428
- PMCID: PMC5561943
- DOI: 10.1007/s12264-013-1361-8
Axonal regeneration after spinal cord injury in zebrafish and mammals: differences, similarities, translation
Abstract
Spinal cord injury (SCI) in mammals results in functional deficits that are mostly permanent due in part to the inability of severed axons to regenerate. Several types of growth-inhibitory molecules expressed at the injury site contribute to this regeneration failure. The responses of axons to these inhibitors vary greatly within and between organisms, reflecting axons' characteristic intrinsic propensity for regeneration. In the zebrafish (Danio rerio) many but not all axons exhibit successful regeneration after SCI. This review presents and compares the intrinsic and extrinsic determinants of axonal regeneration in the injured spinal cord in mammals and zebrafish. A better understanding of the molecules and molecular pathways underlying the remarkable individualism among neurons in mature zebrafish may support the development of therapies for SCI and their translation to the clinic.
Similar articles
-
Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts.Neural Dev. 2011 Jan 4;6:1. doi: 10.1186/1749-8104-6-1. Neural Dev. 2011. PMID: 21205291 Free PMC article.
-
Ptena, but not Ptenb, reduces regeneration after spinal cord injury in adult zebrafish.Exp Neurol. 2014 Nov;261:196-205. doi: 10.1016/j.expneurol.2014.06.006. Epub 2014 Jun 11. Exp Neurol. 2014. PMID: 24929056
-
Extrinsic and Intrinsic Regulation of Axon Regeneration by MicroRNAs after Spinal Cord Injury.Neural Plast. 2016;2016:1279051. doi: 10.1155/2016/1279051. Epub 2016 Oct 13. Neural Plast. 2016. PMID: 27818801 Free PMC article. Review.
-
Respiratory axon regeneration in the chronically injured spinal cord.Neurobiol Dis. 2021 Jul;155:105389. doi: 10.1016/j.nbd.2021.105389. Epub 2021 May 8. Neurobiol Dis. 2021. PMID: 33975016 Free PMC article.
-
Regeneration of descending axon tracts after spinal cord injury.Prog Neurobiol. 2005 Sep-Oct;77(1-2):57-89. doi: 10.1016/j.pneurobio.2005.10.004. Epub 2005 Nov 3. Prog Neurobiol. 2005. PMID: 16271433 Review.
Cited by
-
An update on spinal cord injury research.Neurosci Bull. 2013 Aug;29(4):399-401. doi: 10.1007/s12264-013-1366-3. Neurosci Bull. 2013. PMID: 23893427 Free PMC article. No abstract available.
-
Activating Transcription Factor 3 (ATF3) Protects Retinal Ganglion Cells and Promotes Functional Preservation After Optic Nerve Crush.Invest Ophthalmol Vis Sci. 2020 Feb 7;61(2):31. doi: 10.1167/iovs.61.2.31. Invest Ophthalmol Vis Sci. 2020. PMID: 32084268 Free PMC article.
-
Glial cell ecology in zebrafish development and regeneration.Heliyon. 2020 Feb 29;6(2):e03507. doi: 10.1016/j.heliyon.2020.e03507. eCollection 2020 Feb. Heliyon. 2020. PMID: 32140606 Free PMC article. Review.
-
Insulin-Like Growth Factor-1 Enhances Motoneuron Survival and Inhibits Neuroinflammation After Spinal Cord Transection in Zebrafish.Cell Mol Neurobiol. 2022 Jul;42(5):1373-1384. doi: 10.1007/s10571-020-01022-x. Epub 2021 Jan 22. Cell Mol Neurobiol. 2022. PMID: 33481118 Free PMC article.
-
Neonatal-Inspired Reprogramming of Microglial Pan-Programmed Cell Death Enhances Regeneration in Adult Spinal Cord Injury.Research (Wash D C). 2025 Jul 2;8:0759. doi: 10.34133/research.0759. eCollection 2025. Research (Wash D C). 2025. PMID: 40607322 Free PMC article.
References
-
- Schwab ME, Bartholdi D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev. 1996;76:319–370. - PubMed
-
- ten Donkelaar HJ. Development and regenerative capacity of descending supraspinal pathways in tetrapods: a comparative approach. Adv Anat Embryol Cell Biol. 2000;154:iii–ix. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical