Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Aug;29(4):402-10.
doi: 10.1007/s12264-013-1361-8. Epub 2013 Jul 28.

Axonal regeneration after spinal cord injury in zebrafish and mammals: differences, similarities, translation

Affiliations
Review

Axonal regeneration after spinal cord injury in zebrafish and mammals: differences, similarities, translation

Katarina Vajn et al. Neurosci Bull. 2013 Aug.

Abstract

Spinal cord injury (SCI) in mammals results in functional deficits that are mostly permanent due in part to the inability of severed axons to regenerate. Several types of growth-inhibitory molecules expressed at the injury site contribute to this regeneration failure. The responses of axons to these inhibitors vary greatly within and between organisms, reflecting axons' characteristic intrinsic propensity for regeneration. In the zebrafish (Danio rerio) many but not all axons exhibit successful regeneration after SCI. This review presents and compares the intrinsic and extrinsic determinants of axonal regeneration in the injured spinal cord in mammals and zebrafish. A better understanding of the molecules and molecular pathways underlying the remarkable individualism among neurons in mature zebrafish may support the development of therapies for SCI and their translation to the clinic.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Schwab ME, Bartholdi D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev. 1996;76:319–370. - PubMed
    1. Cao HQ, Dong ED. An update on spinal cord injury research. Neurosci Bull. 2013;29:94–102. doi: 10.1007/s12264-012-1277-8. - DOI - PMC - PubMed
    1. Becker T, Wullimann MF, Becker CG, Bernhardt RR, Schachner M. Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol. 1997;377:577–595. doi: 10.1002/(SICI)1096-9861(19970127)377:4<577::AID-CNE8>3.0.CO;2-#. - DOI - PubMed
    1. Hui SP, Dutta A, Ghosh S. Cellular response after crush injury in adult zebrafish spinal cord. Dev Dyn. 2010;239:2962–2979. doi: 10.1002/dvdy.22438. - DOI - PubMed
    1. ten Donkelaar HJ. Development and regenerative capacity of descending supraspinal pathways in tetrapods: a comparative approach. Adv Anat Embryol Cell Biol. 2000;154:iii–ix. - PubMed

Publication types

LinkOut - more resources