Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2013 Sep;91(9):4090-8.
doi: 10.2527/jas.2012-5826. Epub 2013 Jul 26.

Prediction accuracy for a simulated maternally affected trait of beef cattle using different genomic evaluation models

Affiliations
Comparative Study

Prediction accuracy for a simulated maternally affected trait of beef cattle using different genomic evaluation models

D A L Lourenco et al. J Anim Sci. 2013 Sep.

Abstract

Different methods for genomic evaluation were compared for accuracy and feasibility of evaluation using phenotypic, pedigree, and genomic information for a trait influenced by a maternal effect. A simulated population was constructed that included 15,800 animals in 5 generations. Genotypes from 45,000 SNP were available for 1,500 animals in the last 3 generations. Genotyped animals in the last generation had no phenotypes. Weaning weight data were simulated using an animal model with direct and maternal effects. Additive direct and maternal effects were considered either noncorrelated (formula in text) or negatively correlated (formula in text). Methods of analysis were traditional BLUP, BayesC using phenotypes and ignoring maternal effects (BayesCPR), BayesC using deregressed EBV (BayesCDEBV), and single-step genomic BLUP (ssGBLUP). Whereas BayesCPR can be used when phenotypes of only genotyped animals are available, BayesCDEBV can be used when BLUP EBV of genotyped animals are available, and ssGBLUP is suitable when genotypes, phenotypes, and pedigrees are jointly available. For all genotyped and young genotyped animals, mean accuracies from BayesCPR and BayesCDEBV were lower than accuracies from BLUP for direct and maternal effects. The differences in mean accuracy were greater when genetic correlation was negative. Gains in accuracy were observed when ssGBLUP was compared with BLUP; for the direct (maternal) effect the average gain was 0.01 (0.02) for all genotyped animals and 0.03 (0.02) for young genotyped animals without phenotypes. Similar gains were observed for 0 and negative genetic correlation. Accuracy with BayesCPR was affected by ignoring phenotypes of nongenotyped animals and maternal effect and by not accounting for parent average. Accuracy with BayesCDEBV was affected by approximations needed for deregression, not accounting for parent average, and sequential rather than simultaneous fitting of genomic and nongenomic information. Whereas BayesCDEBV presented a considerable bias, especially for maternal effect, ssGBLUP was unbiased for both effects. The computing time was 1 s for BLUP, 44 s for ssGBLUP, and over 2,000 s for BayesC. Greatest computational efficiency and accuracy of genomic prediction for a maternally affected trait was obtained when information from all nongenotyped but related individuals was included and phenotypes, pedigree, and genotypes were available and considered jointly. Increasing the gain in accuracy of genomic predictions obtained by ssGBLUP over BLUP may require an increase in the number of genotyped animals.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources