Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Feb-Mar;169(2-3):163-70.
doi: 10.1016/j.micres.2013.07.005. Epub 2013 Jul 27.

The application of antimicrobial photodynamic therapy on S. aureus and E. coli using porphyrin photosensitizers bound to cyclodextrin

Affiliations
Free article

The application of antimicrobial photodynamic therapy on S. aureus and E. coli using porphyrin photosensitizers bound to cyclodextrin

Adela Hanakova et al. Microbiol Res. 2014 Feb-Mar.
Free article

Abstract

Photodynamic therapy is usually used against malignant and non-malignant tumors. Nowadays, due to resistance of bacterial strains, we are looking for a new antimicrobial strategy to destroy bacteria with minimal invasive consequences. The worldwide increase in antibiotic resistance among different classes of gram-positive and gram-negative bacteria has led to the search for alternative anti-microbial therapies such as antimicrobial PDT (aPDT). Development antimicrobial technology combines a nontoxic compound, called photosensitizer, visible light of the appropriate wavelength, and the generation of reactive oxygen species. In this work, the photosensitizers TMPyP and ZnTPPS4 are investigated for photodynamic and antimicrobial photodynamic therapy. We tested these two porphyrins on two cell lines and two bacterial strains to compare effectiveness. In addition, we applied photosensitizers bound in the complex created with hp-β-cyclodextrin. The light-emitting diodes were used at the doses 0, 1, 5, 10 J/cm(2) for cells and 0, 150 J/cm(2) for bacteria. Tested concentrations for cells and microbes were from 0.5 to 50 μM and from 0.78 to 100 μM, respectively. From this work it can be concluded that TMPyP is a promising compound both in aPDT and in PDT, particularly in contrast to ZnTPPS4, which was efficient only in PDT. Furthermore, the eradication of gram-positive bacteria is possible only with higher concentrations of ZnTPPS4.

Keywords: Antimicrobial photodynamic therapy; Gram-negative bacteria; Gram-positive bacteria; Photodynamic therapy; Porphyrins.

PubMed Disclaimer

Publication types

MeSH terms