Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2014 Feb;59(2):683-94.
doi: 10.1002/hep.26648. Epub 2013 Dec 16.

Testosterone perturbs systemic iron balance through activation of epidermal growth factor receptor signaling in the liver and repression of hepcidin

Affiliations
Comparative Study

Testosterone perturbs systemic iron balance through activation of epidermal growth factor receptor signaling in the liver and repression of hepcidin

Chloé Latour et al. Hepatology. 2014 Feb.

Abstract

Gender-related disparities in the regulation of iron metabolism may contribute to the differences exhibited by men and women in the progression of chronic liver diseases associated with reduced hepcidin expression, e.g., chronic hepatitis C, alcoholic liver disease, or hereditary hemochromatosis. However, their mechanisms remain poorly understood. In this study we took advantage of the major differences in hepcidin expression and tissue iron loading observed between Bmp6-deficient male and female mice to investigate the mechanisms underlying this sexual dimorphism. We found that testosterone robustly represses hepcidin transcription by enhancing Egfr signaling in the liver and that selective epidermal growth factor receptor (Egfr) inhibition by gefitinib (Iressa) in males markedly increases hepcidin expression. In males, where the suppressive effects of testosterone and Bmp6-deficiency on hepcidin expression are combined, hepcidin is more strongly repressed than in females and iron accumulates massively not only in the liver but also in the pancreas, heart, and kidneys.

Conclusion: Testosterone-induced repression of hepcidin expression becomes functionally important during homeostatic stress from disorders that result in iron loading and/or reduced capacity for hepcidin synthesis. These findings suggest that novel therapeutic strategies targeting the testosterone/EGF/EGFR axis may be useful for inducing hepcidin expression in patients with iron overload and/or chronic liver diseases.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources