Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct:71:121-31.
doi: 10.1016/j.plaphy.2013.07.006. Epub 2013 Jul 16.

Characterization of three novel isoprenyl diphosphate synthases from the terpenoid rich mango fruit

Affiliations

Characterization of three novel isoprenyl diphosphate synthases from the terpenoid rich mango fruit

Ram Kulkarni et al. Plant Physiol Biochem. 2013 Oct.

Abstract

Mango (cv. Alphonso) is popular due to its highly attractive, terpenoid-rich flavor. Although Alphonso is clonally propagated, its fruit-flavor composition varies when plants are grown in different geo-climatic zones. Isoprenyl diphosphate synthases catalyze important branch-point reactions in terpenoid biosynthesis, providing precursors for common terpenoids such as volatile terpenes, sterols and carotenoids. Two geranyl diphosphate synthases and a farnesyl diphosphate synthase were isolated from Alphonso fruits, cloned for recombinant expression and found to produce the respective products. Although, one of the geranyl diphosphate synthases showed high sequence similarity to the geranylgeranyl diphosphate synthases, it did not exhibit geranylgeranyl diphosphate synthesizing activity. When modeled, this geranyl diphosphate synthase and farnesyl diphosphate synthase structures were found to be homologous with the reference structures, having all the catalytic side chains appropriately oriented. The optimum temperature for both the geranyl diphosphate synthases was 40 °C and that for farnesyl diphosphate synthase was 25 °C. This finding correlated well with the dominance of monoterpenes in comparison to sesquiterpenes in the fruits of Alphonso mango in which the mesocarp temperature is higher during ripening than development. The absence of activity of these enzymes with the divalent metal ion other than Mg(2+) indicated their adaptation to the Mg(2+) rich mesocarp. The typical expression pattern of these genes through the ripening stages of fruits from different cultivation localities depicting the highest transcript levels of these genes in the stage preceding the maximum terpene accumulation indicated the involvement of these genes in the biosynthesis of volatile terpenes.

Keywords: Alphonso; Flavor variation; Fruit; Isoprenyl diphosphate synthase; Mangifera indica; Terpene volatiles.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources