Recruitment and retention: factors that affect pericyte migration
- PMID: 23912898
- PMCID: PMC3880607
- DOI: 10.1007/s00018-013-1432-z
Recruitment and retention: factors that affect pericyte migration
Abstract
Pericytes are critical for vascular morphogenesis and contribute to several pathologies, including cancer development and progression. The mechanisms governing pericyte migration and differentiation are complex and have not been fully established. Current literature suggests that platelet-derived growth factor/platelet-derived growth factor receptor-β, sphingosine 1-phosphate/endothelial differentiation gene-1, angiopoietin-1/tyrosine kinase with immunoglobulin-like and EGF-like domains 2, angiopoietin-2/tyrosine kinase with immunoglobulin-like and EGF-like domains 2, transforming growth factor β/activin receptor-like kinase 1, transforming growth factor β/activin receptor-like kinase 5, Semaphorin-3A/Neuropilin, and matrix metalloproteinase activity regulate the recruitment of pericytes to nascent vessels. Interestingly, many of these pathways are directly affected by secreted protein acidic and rich in cysteine (SPARC). Here, we summarize the function of these factors in pericyte migration and discuss if and how SPARC might influence these activities and thus provide an additional layer of control for the recruitment of vascular support cells. Additionally, the consequences of targeted inhibition of pericytes in tumors and the current understanding of pericyte recruitment in pathological environments are discussed.
Conflict of interest statement
The authors have no competing interests to disclose.
Figures
References
-
- Armulik A, Genové G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193–215. - PubMed
-
- Dulauroy S, et al. Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat Med. 2012;18:1262–1270. - PubMed
-
- Eberhard A, et al. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res. 2000;60(5):1388–1393. - PubMed
-
- Helmlinger G, et al. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med. 1997;3(2):177–182. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
