Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Jan 25;382(1):480-487.
doi: 10.1016/j.mce.2013.07.027. Epub 2013 Aug 3.

The regulation of maturation promoting factor during prophase I arrest and meiotic entry in mammalian oocytes

Affiliations
Review

The regulation of maturation promoting factor during prophase I arrest and meiotic entry in mammalian oocytes

Deepak Adhikari et al. Mol Cell Endocrinol. .

Abstract

Mammalian oocytes arrest at prophase of meiosis I at around birth and they remain arrested at this stage until puberty when the preovulatory surge of luteinizing hormone (LH) causes ovulation. Prophase I arrest in the immature oocyte results from the maintenance of low activity of maturation promoting factor (MPF), which consists of a catalytic subunit (CDK1) and regulatory subunit (cyclin B1). Phosphorylation-mediated inactivation of CDK1 and constant degradation of cyclin B1 keep MPF activity low during prophase I arrest. LH-mediated signaling manipulates a vast array of molecules to activate CDK1. Active CDK1 not only phosphorylates different meiotic phosphoproteins during the resumption of meiosis but also inhibits their rapid dephosphorylation by inhibiting the activities of CDK1 antagonizing protein phosphatases (PPs). In this way, CDK1 both phosphorylates its substrates and protects them from being dephosphorylated. Accumulating evidence suggests that the net MPF activity that drives the resumption of meiosis in oocytes depends on the activation status of CDK1 antagonizing PPs. This review aims to provide a summary of the current understanding of the signaling pathways involved in regulating MPF activity during prophase I arrest and reentry into meiosis of mammalian oocytes.

Keywords: MPF; Meiosis resumption; Oocyte; Protein phosphatases.

PubMed Disclaimer

Substances

LinkOut - more resources