Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 May:424:487-512.
doi: 10.1113/jphysiol.1990.sp018079.

Locomotion-related variations in excitability of spino-olivocerebellar paths to cat cerebellar cortical c2 zone

Affiliations

Locomotion-related variations in excitability of spino-olivocerebellar paths to cat cerebellar cortical c2 zone

R Apps et al. J Physiol. 1990 May.

Abstract

1. Cutaneous nerve stimulation was used to study the excitability of the spino-olivocerebellar pathways (SOCPs) to the c2 zone of the paravermal cerebellar cortex in the cat. Non-noxious single-shock stimulation of the right and left superficial radial (SR) nerves via implanted cuff electrodes was used to evoke field potentials in the cerebellar cortex via the SOCPs. 2. The evoked potentials were recorded extracellularly either in lobule V of the anterior lobe (three cats) or within the paramedian lobule of the posterior lobe (one cat) with glass-coated tungsten microelectrodes. Measurement of the amplitudes of the responses was used to monitor transmission in the SOCPs in cats at rest and during walking. 3. A total of eleven c2 recording sites were investigated in detail. At seven of these sites, responses were recorded both during locomotion and at rest. For all seven sites responses during locomotion were smaller, more variable in amplitude and less securely evoked (average reduction 59%). 4. At five out of the eleven recording sites (45%) the mean amplitude of responses elicited during different tenths of the step cycle fluctuated sufficiently that the largest response was more than twice the smallest. In the majority of these cases (4/5) the responses were largest in either mid-stance or late swing. These fluctuations in response size occurred without parallel fluctuation in the amplitude of the peripheral nerve volley. At the remaining sites fluctuation of the cerebellar field size was less and in some cases practically absent. 5. At six recording sites it was possible to record the climbing fibre potentials evoked by stimulation of both the ipsilateral and contralateral superficial radial nerves. In all six cases the fluctuations in size of the response during locomotion occurred in phase, despite the fact that the two limbs move out of phase. 6. The probability that an individual stimulus would evoke any cerebellar response also varied between the different tenths of the step cycle and such variations occurred in parallel with the fluctuations in response size. This shows that the SOCP regulatory mechanism(s) must, at least in part, operate at a precerebellar level.

PubMed Disclaimer

References

    1. Exp Brain Res. 1987;66(2):318-38 - PubMed
    1. J Neurophysiol. 1987 Mar;57(3):787-802 - PubMed
    1. J Physiol. 1987 May;386:529-38 - PubMed
    1. Exp Brain Res. 1987;68(2):339-54 - PubMed
    1. J Physiol. 1988 Jun;400:405-14 - PubMed

Publication types

LinkOut - more resources