A re-analysis of the Cochrane Library data: the dangers of unobserved heterogeneity in meta-analyses
- PMID: 23922860
- PMCID: PMC3724681
- DOI: 10.1371/journal.pone.0069930
A re-analysis of the Cochrane Library data: the dangers of unobserved heterogeneity in meta-analyses
Abstract
Background: Heterogeneity has a key role in meta-analysis methods and can greatly affect conclusions. However, true levels of heterogeneity are unknown and often researchers assume homogeneity. We aim to: a) investigate the prevalence of unobserved heterogeneity and the validity of the assumption of homogeneity; b) assess the performance of various meta-analysis methods; c) apply the findings to published meta-analyses.
Methods and findings: We accessed 57,397 meta-analyses, available in the Cochrane Library in August 2012. Using simulated data we assessed the performance of various meta-analysis methods in different scenarios. The prevalence of a zero heterogeneity estimate in the simulated scenarios was compared with that in the Cochrane data, to estimate the degree of unobserved heterogeneity in the latter. We re-analysed all meta-analyses using all methods and assessed the sensitivity of the statistical conclusions. Levels of unobserved heterogeneity in the Cochrane data appeared to be high, especially for small meta-analyses. A bootstrapped version of the DerSimonian-Laird approach performed best in both detecting heterogeneity and in returning more accurate overall effect estimates. Re-analysing all meta-analyses with this new method we found that in cases where heterogeneity had originally been detected but ignored, 17-20% of the statistical conclusions changed. Rates were much lower where the original analysis did not detect heterogeneity or took it into account, between 1% and 3%.
Conclusions: When evidence for heterogeneity is lacking, standard practice is to assume homogeneity and apply a simpler fixed-effect meta-analysis. We find that assuming homogeneity often results in a misleading analysis, since heterogeneity is very likely present but undetected. Our new method represents a small improvement but the problem largely remains, especially for very small meta-analyses. One solution is to test the sensitivity of the meta-analysis conclusions to assumed moderate and large degrees of heterogeneity. Equally, whenever heterogeneity is detected, it should not be ignored.
Conflict of interest statement
Figures
References
-
- Egger M, Smith GD, Altman DG, NetLibrary I (2001) Systematic reviews in health care : meta-analysis in context: London : BMJ Books.
-
- DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control ClinTrials 7: 177–188. - PubMed
-
- Brockwell SE, Gordon IR (2001) A comparison of statistical methods for meta-analysis. StatMed 20: 825–840. - PubMed
-
- Kontopantelis E, Reeves D (2012) Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: A simulation study. Statistical Methods in Medical Research 21: 409–426. - PubMed
-
- Biggerstaff BJ, Tweedie RL (1997) Incorporating variability in estimates of heterogeneity in the random effects model in meta-analysis. Statistics in Medicine 16: 753–768. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
