Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Sep 3;10(9):3333-41.
doi: 10.1021/mp4001102. Epub 2013 Aug 7.

Dynamic regulation of P-glycoprotein in human brain capillaries

Affiliations

Dynamic regulation of P-glycoprotein in human brain capillaries

Janine Avemary et al. Mol Pharm. .

Abstract

Considering its role as a major blood-brain barrier gatekeeper, the dynamic regulation of the efflux transporter P-glycoprotein is of considerable functional relevance. In particular, disease-associated alterations in transport function might affect central nervous system drug efficacy. Thus, targeting regulatory signaling cascades might render a basis for novel therapeutic approaches. Using capillaries freshly prepared from patient tissue resected during epilepsy surgery, we demonstrate dynamic regulation of P-glycoprotein in human brain capillaries. Glutamate proved to up-regulate P-glycoprotein efflux transport in a significant manner via endothelial NMDA receptors. Both inhibition of cyclooxygenase-2 and antagonism at the glycine-binding site of the NMDA receptor prevented the glutamate-mediated induction of P-glycoprotein transport function in human capillaries. In conclusion, the data argue against species differences in the signaling factors increasing endothelial P-glycoprotein transport function in response to glutamate exposure. Targeting of cyclooxygenase-2 and of the NMDA receptor glycine-binding site was confirmed as an efficacious approach to control P-glycoprotein function. The findings might render a basis for translational development of add-on approaches to improve brain penetration and efficacy of drugs.

PubMed Disclaimer

LinkOut - more resources