Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013;68(3):591-8.
doi: 10.2166/wst.2013.235.

Enhancement of denitrification in a down-flow hanging sponge reactor by effluent recirculation

Affiliations

Enhancement of denitrification in a down-flow hanging sponge reactor by effluent recirculation

N Ikeda et al. Water Sci Technol. 2013.

Abstract

A down-flow hanging sponge reactor, constructed by connecting three identical units in series, was applied to the treatment of artificial wastewater containing phenol and ammonia under high salinity conditions (10.9 g-Cl(-)/L). The theoretical hydraulic retention time (HRT) of each unit was 4 h (total HRT = 12 h). To enhance denitrification by effluent recirculation, the effluent recirculation ratio was increased in increments ranging from 0.0 to 2.0. The concentration of total ammonia nitrogen (TAN), NO2-N, and NO3-N in the final effluent as a proportion of the TAN in the influent was determined to calculate the unrecovered, or denitrification, proportion. The denitrification proportion of the reactor was equivalent to 19.1 ± 14.1% with no effluent recirculation; however, this was increased to 58.6 ± 6.2% when the effluent recirculation ratio was increased to 1.5. Further increasing the effluent recirculation ratio to 2.0 resulted in a decrease in the denitrification proportion to 50.9 ± 9.3%. Activity assays of nitrification and denitrification, as well as 16S rRNA gene sequence analysis, revealed that denitrification occurred primarily in the upper sections of the reactor, while nitrification increased in the lower sections of the reactor. Gene sequence analysis revealed that denitrification by Azoarcus-like species using phenol as an electron donor was dominant.

PubMed Disclaimer

LinkOut - more resources