Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Aug 8:12:279.
doi: 10.1186/1475-2875-12-279.

Is a Plasmodium lactate dehydrogenase (pLDH) enzyme-linked immunosorbent (ELISA)-based assay a valid tool for detecting risky malaria blood donations in Africa?

Affiliations

Is a Plasmodium lactate dehydrogenase (pLDH) enzyme-linked immunosorbent (ELISA)-based assay a valid tool for detecting risky malaria blood donations in Africa?

Pascal S Atchade et al. Malar J. .

Abstract

Background: Malaria is a leading cause of mortality in southern Benin. The main causative agent, Plasmodium falciparum, poses a threat on critical transfusions in pregnant women and children. This study's objective was to compare the performance of different malaria screening methods in blood donors in southern Benin, a malaria-endemic country.

Methods: Blood from 2,515 voluntary blood donors in Benin was collected over a period of 10 months in ethylenediaminetetraacetic acid (EDTA) tubes, which were then classified according to extraction time: long rainy season, short dry season, short rainy season, and long dry season. Microscopic examination was used to count parasites. Parasite density (PD) was expressed as the number of parasites per μL of blood. Pan Plasmodium pLDH detection was assessed by an ELISA-malaria antigen test. Using crude soluble P. falciparum antigens, an ELISA-malaria antibody test detected anti-Plasmodium antibodies.

Results: Among the 2,515 blood donors (2,025 males and 488 females) screened, the rate of asymptomatic Plasmodium carriage was 295/2,515 (11.72%, 95% CI: 10.5-13.1%). Males had a higher infection rate (12.4%) than did females (8.8%). Parasite density was very low: between seven and100 parasites per μL of blood was reported in 80% of donors with parasitaemia. Three Plasmodium species were diagnosed: P. falciparum in 280/295 patients (95.0%), Plasmodium malariae in 14/295 (5.0%), and Plasmodium ovale in 1/295 (0.34%). Malaria prevalence in donors was higher during the rainy seasons (13.7%) compared with the dry seasons (9.9%). The use of a highly sensitive assay enabled pan Plasmodium pLDH detection in 966/2,515 (38.4%, 95% CI: 36.5%-40.3%). Malaria antibody prevalence was 1,859/2,515 (73.9%, 95% CI: 72.16-75.6%). Donors' antigenaemia and antibody levels varied significantly (P <0.05) over the course of the four seasons. The highest antigenaemia rate 323/630 (51.3%), was observed during the short rainy season, while the highest antibody prevalence, 751/886 (84.7%), was recorded during the long dry season.

Conclusion: Blood donations infected with Plasmodium can transmit malaria to donation recipients. Malaria diagnostic methods are currently available, but the feasibility criteria for mass screening in endemic areas become preponderant. Detection of the pLDH antigen seems to be an adequate screening tool in endemic areas, for this antigen indicates parasite presence. Routine screening of all donated blood would prevent infected blood donations and reduce P. falciparum transmission in critical patients, such as children and pregnant women. This tool would also decrease medical prophylaxis in donation recipients and contribute to lower Plasmodium resistance.

PubMed Disclaimer

Figures

Figure 1
Figure 1
pLDH detectability for Plasmodium falciparum and recombinant pLDH. Standard curve for a range of ten assays for rpLDH and 15 assays for Pf iRBCs. Detectability was 2.5 ng/mL for rpLDH and one parasite per μL for RBC.
Figure 2
Figure 2
Prevalence rates were calculated for Plasmodium presence by microscopy and pLDH detection, and for malaria antibodies in a population of asymptomatic blood donors (n= 2,515) over a ten-month period, divided in long rainy season (LRS) from May to July 590/2,515, short dry season (SDS) from August to September 409/2,515, short rainy season (SRS) from October to November 100/630, and long dry season (LDS) from December to February 80/886.

Similar articles

Cited by

References

    1. Woolsey. Transfusion for pernicious anaemia: two cases. Ann Surg. 1991;53:132–135.
    1. Wylie BR. Transfusion transmitted infection: viral and exotic diseases. Anaesth Intensive Care. 1993;21:24–30. - PubMed
    1. Uneke CJ, Ogbu O, Nwojiji V. Potential risk of induced malaria by blood transfusion in South-eastern Nigeria. McGill J Med. 2006;9:8–13. - PMC - PubMed
    1. Kinde G, Oke J, Gnahoui I, Massougbodji A. [The risk of malaria transmission by blood transfusion at Cotonou, Benin](in French) Sante. 2000;10:389–392. - PubMed
    1. Chattopadhyay R, Majam VF, Kumar S. Survival of Plasmodium falciparum in human blood during refrigeration. Transfusion. 2011;51:630–635. doi: 10.1111/j.1537-2995.2010.02872.x. - DOI - PubMed

Publication types

MeSH terms