Genome Sequence of the 2,4,5-Trichlorophenoxyacetate-Degrading Bacterium Burkholderia phenoliruptrix Strain AC1100
- PMID: 23929488
- PMCID: PMC3738904
- DOI: 10.1128/genomeA.00600-13
Genome Sequence of the 2,4,5-Trichlorophenoxyacetate-Degrading Bacterium Burkholderia phenoliruptrix Strain AC1100
Abstract
Burkholderia phenoliruptrix strain AC1100 (ATCC 53867) degrades a variety of recalcitrant xenobiotics, including 2,4,5-trichlorophenoxyacetate. The molecular mechanism of 2,4,5-trichlorophenoxyacetate degradation has been extensively studied. Here we present a 7.8-Mb assembly of the genome sequence of this 2,4,5-trichlorophenoxyacetate-degrading strain, which may provide useful information related to the degradation of chlorinated aromatic compounds.
Similar articles
-
Burkholderia phenoliruptrix sp. nov., to accommodate the 2,4,5-trichlorophenoxyacetic acid and halophenol-degrading strain AC1100.Syst Appl Microbiol. 2004 Nov;27(6):623-7. doi: 10.1078/0723202042369992. Syst Appl Microbiol. 2004. PMID: 15612618
-
Purification and Properties of Component B of 2,4,5-Trichlorophenoxyacetate Oxygenase from Pseudomonas cepacia AC1100.Appl Environ Microbiol. 1995 Sep;61(9):3499-502. doi: 10.1128/aem.61.9.3499-3502.1995. Appl Environ Microbiol. 1995. PMID: 16535134 Free PMC article.
-
Biodegradation of 2,4,5-trichlorophenoxyacetic acid by Burkholderia cepacia strain AC1100: evolutionary insight.Gene. 1996 Nov 7;179(1):1-8. doi: 10.1016/s0378-1119(96)00326-5. Gene. 1996. PMID: 8955624 Review.
-
Genome sequence of the nitroaromatic compound-degrading Bacterium Burkholderia sp. strain SJ98.J Bacteriol. 2012 Jun;194(12):3286. doi: 10.1128/JB.00497-12. J Bacteriol. 2012. PMID: 22628512 Free PMC article.
-
Functional genomics of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1.Appl Microbiol Biotechnol. 2005 Sep;68(5):580-7. doi: 10.1007/s00253-005-0030-x. Epub 2005 Oct 26. Appl Microbiol Biotechnol. 2005. PMID: 16041578 Review.
Cited by
-
Desulfitobacterium contributes to the microbial transformation of 2,4,5-T by methanogenic enrichment cultures from a Vietnamese active landfill.Microb Biotechnol. 2018 Nov;11(6):1137-1156. doi: 10.1111/1751-7915.13301. Epub 2018 Aug 16. Microb Biotechnol. 2018. PMID: 30117290 Free PMC article.
-
Molecular mechanisms underlying the close association between soil Burkholderia and fungi.ISME J. 2016 Jan;10(1):253-64. doi: 10.1038/ismej.2015.73. Epub 2015 May 19. ISME J. 2016. PMID: 25989372 Free PMC article.
References
-
- Coenye T, Vandamme P. 2003. Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ. Microbiol. 5:719–729 - PubMed
-
- Kellogg ST, Chatterjee DK, Chakrabarty AM. 1981. Plasmid-assisted molecular breeding: new technique for enhanced biodegradation of persistent toxic chemicals. Science 214:1133–1135 - PubMed
-
- Sangodkar UM, Chapman PJ, Chakrabarty AM. 1988. Cloning, physical mapping and expression of chromosomal genes specifying degradation of the herbicide 2,4,5-T by Pseudomonas cepacia AC1100. Gene 71:267–277 - PubMed
-
- Haugland RA, Sangodkar UM, Sferra PR, Chakrabarty AM. 1991. Cloning and characterization of a chromosomal DNA region required for growth on 2,4,5-T by Pseudomonas cepacia AC1100. Gene 100:65–73 - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous